Standard

On some selectors of a core. / Zakharov, V. V.; Akimova, A. N.

в: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, № 3, 01.01.2002, стр. 10-16.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Zakharov, VV & Akimova, AN 2002, 'On some selectors of a core', Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, № 3, стр. 10-16.

APA

Zakharov, V. V., & Akimova, A. N. (2002). On some selectors of a core. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, (3), 10-16.

Vancouver

Zakharov VV, Akimova AN. On some selectors of a core. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2002 Янв. 1;(3):10-16.

Author

Zakharov, V. V. ; Akimova, A. N. / On some selectors of a core. в: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2002 ; № 3. стр. 10-16.

BibTeX

@article{5c99ec6739914ba587745c85f3331f53,
title = "On some selectors of a core",
abstract = "The investigation of the properties of a new solution of TU-cooperative games called a subcore shows that a grand subcore is a multiple selector of the core in a balanced game. Under additional restrictions for the structure of set X0(v) optimal solutions of the linear programming problem considered sufficient are obtained for a nucleus to be a selector of a grand subcore. Moreover we proved the proportional nucleus, which is the modification of a nucleus, is a selector of a grand subcore in any balanced n-person TU-game.",
author = "Zakharov, {V. V.} and Akimova, {A. N.}",
year = "2002",
month = jan,
day = "1",
language = "English",
pages = "10--16",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "3",

}

RIS

TY - JOUR

T1 - On some selectors of a core

AU - Zakharov, V. V.

AU - Akimova, A. N.

PY - 2002/1/1

Y1 - 2002/1/1

N2 - The investigation of the properties of a new solution of TU-cooperative games called a subcore shows that a grand subcore is a multiple selector of the core in a balanced game. Under additional restrictions for the structure of set X0(v) optimal solutions of the linear programming problem considered sufficient are obtained for a nucleus to be a selector of a grand subcore. Moreover we proved the proportional nucleus, which is the modification of a nucleus, is a selector of a grand subcore in any balanced n-person TU-game.

AB - The investigation of the properties of a new solution of TU-cooperative games called a subcore shows that a grand subcore is a multiple selector of the core in a balanced game. Under additional restrictions for the structure of set X0(v) optimal solutions of the linear programming problem considered sufficient are obtained for a nucleus to be a selector of a grand subcore. Moreover we proved the proportional nucleus, which is the modification of a nucleus, is a selector of a grand subcore in any balanced n-person TU-game.

UR - http://www.scopus.com/inward/record.url?scp=0038339235&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0038339235

SP - 10

EP - 16

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 3

ER -

ID: 40898135