Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On Singularly Perturbed Linear Cocycles over Irrational Rotations. / Ivanov, Alexey V.
в: Regular and Chaotic Dynamics, Том 26, № 3, 01.01.2021, стр. 205-221.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On Singularly Perturbed Linear Cocycles over Irrational Rotations
AU - Ivanov, Alexey V.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - We study a linear cocycle over the irrational rotation $$\sigma_{\omega}(x)=x+\omega$$ of the circle $$\mathbb{T}^{1}$$. It is supposed that the cocycle is generated by a $$C^{2}$$-map$$A_{\varepsilon}:\mathbb{T}^{1}\to SL(2,\mathbb{R})$$ which depends on a small parameter $$\varepsilon\ll 1$$ and has the form of the Poincaré map corresponding to a singularly perturbed Hill equation with quasi-periodic potential. Under the assumption that the norm of the matrix $$A_{\varepsilon}(x)$$ is of order $$\exp(\pm\lambda(x)/\varepsilon)$$, where $$\lambda(x)$$ is a positive function, we examine the property of the cocycle to possess an exponential dichotomy (ED) with respect to the parameter $$\varepsilon$$. We show that in the limit $$\varepsilon\to 0$$ the cocycle “typically” exhibits ED only if it is exponentially close to a constant cocycle.Conversely, if the cocycle is not close to a constant one,it does not possess ED, whereas the Lyapunov exponent is “typically” large.
AB - We study a linear cocycle over the irrational rotation $$\sigma_{\omega}(x)=x+\omega$$ of the circle $$\mathbb{T}^{1}$$. It is supposed that the cocycle is generated by a $$C^{2}$$-map$$A_{\varepsilon}:\mathbb{T}^{1}\to SL(2,\mathbb{R})$$ which depends on a small parameter $$\varepsilon\ll 1$$ and has the form of the Poincaré map corresponding to a singularly perturbed Hill equation with quasi-periodic potential. Under the assumption that the norm of the matrix $$A_{\varepsilon}(x)$$ is of order $$\exp(\pm\lambda(x)/\varepsilon)$$, where $$\lambda(x)$$ is a positive function, we examine the property of the cocycle to possess an exponential dichotomy (ED) with respect to the parameter $$\varepsilon$$. We show that in the limit $$\varepsilon\to 0$$ the cocycle “typically” exhibits ED only if it is exponentially close to a constant cocycle.Conversely, if the cocycle is not close to a constant one,it does not possess ED, whereas the Lyapunov exponent is “typically” large.
KW - exponential dichotomy
KW - linear cocycle
KW - Lyapunov exponent
KW - reducibility
UR - http://www.scopus.com/inward/record.url?scp=85107115462&partnerID=8YFLogxK
U2 - 10.1134/S1560354721030011
DO - 10.1134/S1560354721030011
M3 - Article
AN - SCOPUS:85107115462
VL - 26
SP - 205
EP - 221
JO - Regular and Chaotic Dynamics
JF - Regular and Chaotic Dynamics
SN - 1560-3547
IS - 3
ER -
ID: 95584684