Standard

On recurrence coefficients of Steklov measures. / Bessonov, R. V.

в: Collectanea Mathematica, Том 69, № 2, 01.05.2018, стр. 237-248.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Bessonov, RV 2018, 'On recurrence coefficients of Steklov measures', Collectanea Mathematica, Том. 69, № 2, стр. 237-248. https://doi.org/10.1007/s13348-017-0203-9

APA

Vancouver

Author

Bessonov, R. V. / On recurrence coefficients of Steklov measures. в: Collectanea Mathematica. 2018 ; Том 69, № 2. стр. 237-248.

BibTeX

@article{07f9d3d936b1417fa03f31562e190480,
title = "On recurrence coefficients of Steklov measures",
abstract = "A measure μ on the unit circle T belongs to Steklov class S if its density w with respect to the Lebesgue measure on T is strictly positive: essinfTw>0. Let μ, μ- 1 be measures on the unit circle T with real recurrence coefficients { αk} , { - αk} , correspondingly. If μ∈ S and μ- 1∈ S, then partial sums sk= α0+ … + αk satisfy the discrete Muckenhoupt condition supn0(1n-ℓ∑k=ℓn-1e2sk)(1n-ℓ∑k=ℓn-1e-2sk)<∞.",
keywords = "Bounded mean oscillation, Muckenhoupt class, Orthogonal polynomials, Steklov conjecture, Bounded dmean oscillation",
author = "Bessonov, {R. V.}",
year = "2018",
month = may,
day = "1",
doi = "10.1007/s13348-017-0203-9",
language = "English",
volume = "69",
pages = "237--248",
journal = "Collectanea Mathematica",
issn = "0010-0757",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - On recurrence coefficients of Steklov measures

AU - Bessonov, R. V.

PY - 2018/5/1

Y1 - 2018/5/1

N2 - A measure μ on the unit circle T belongs to Steklov class S if its density w with respect to the Lebesgue measure on T is strictly positive: essinfTw>0. Let μ, μ- 1 be measures on the unit circle T with real recurrence coefficients { αk} , { - αk} , correspondingly. If μ∈ S and μ- 1∈ S, then partial sums sk= α0+ … + αk satisfy the discrete Muckenhoupt condition supn0(1n-ℓ∑k=ℓn-1e2sk)(1n-ℓ∑k=ℓn-1e-2sk)<∞.

AB - A measure μ on the unit circle T belongs to Steklov class S if its density w with respect to the Lebesgue measure on T is strictly positive: essinfTw>0. Let μ, μ- 1 be measures on the unit circle T with real recurrence coefficients { αk} , { - αk} , correspondingly. If μ∈ S and μ- 1∈ S, then partial sums sk= α0+ … + αk satisfy the discrete Muckenhoupt condition supn0(1n-ℓ∑k=ℓn-1e2sk)(1n-ℓ∑k=ℓn-1e-2sk)<∞.

KW - Bounded mean oscillation

KW - Muckenhoupt class

KW - Orthogonal polynomials

KW - Steklov conjecture

KW - Bounded dmean oscillation

UR - http://www.scopus.com/inward/record.url?scp=85044930405&partnerID=8YFLogxK

U2 - 10.1007/s13348-017-0203-9

DO - 10.1007/s13348-017-0203-9

M3 - Article

AN - SCOPUS:85044930405

VL - 69

SP - 237

EP - 248

JO - Collectanea Mathematica

JF - Collectanea Mathematica

SN - 0010-0757

IS - 2

ER -

ID: 36320788