Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On recurrence coefficients of Steklov measures. / Bessonov, R. V.
в: Collectanea Mathematica, Том 69, № 2, 01.05.2018, стр. 237-248.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On recurrence coefficients of Steklov measures
AU - Bessonov, R. V.
PY - 2018/5/1
Y1 - 2018/5/1
N2 - A measure μ on the unit circle T belongs to Steklov class S if its density w with respect to the Lebesgue measure on T is strictly positive: essinfTw>0. Let μ, μ- 1 be measures on the unit circle T with real recurrence coefficients { αk} , { - αk} , correspondingly. If μ∈ S and μ- 1∈ S, then partial sums sk= α0+ … + αk satisfy the discrete Muckenhoupt condition supn0(1n-ℓ∑k=ℓn-1e2sk)(1n-ℓ∑k=ℓn-1e-2sk)<∞.
AB - A measure μ on the unit circle T belongs to Steklov class S if its density w with respect to the Lebesgue measure on T is strictly positive: essinfTw>0. Let μ, μ- 1 be measures on the unit circle T with real recurrence coefficients { αk} , { - αk} , correspondingly. If μ∈ S and μ- 1∈ S, then partial sums sk= α0+ … + αk satisfy the discrete Muckenhoupt condition supn0(1n-ℓ∑k=ℓn-1e2sk)(1n-ℓ∑k=ℓn-1e-2sk)<∞.
KW - Bounded mean oscillation
KW - Muckenhoupt class
KW - Orthogonal polynomials
KW - Steklov conjecture
KW - Bounded dmean oscillation
UR - http://www.scopus.com/inward/record.url?scp=85044930405&partnerID=8YFLogxK
U2 - 10.1007/s13348-017-0203-9
DO - 10.1007/s13348-017-0203-9
M3 - Article
AN - SCOPUS:85044930405
VL - 69
SP - 237
EP - 248
JO - Collectanea Mathematica
JF - Collectanea Mathematica
SN - 0010-0757
IS - 2
ER -
ID: 36320788