Standard

On Probabilities of Moderate Deviations of Empirical Measures for Contiguous Distributions. / Ermakov, M. S.

в: Journal of Mathematical Sciences (United States), Том 229, № 6, 01.03.2018, стр. 671-677.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Ermakov, MS 2018, 'On Probabilities of Moderate Deviations of Empirical Measures for Contiguous Distributions', Journal of Mathematical Sciences (United States), Том. 229, № 6, стр. 671-677. https://doi.org/10.1007/s10958-018-3706-3

APA

Vancouver

Author

Ermakov, M. S. / On Probabilities of Moderate Deviations of Empirical Measures for Contiguous Distributions. в: Journal of Mathematical Sciences (United States). 2018 ; Том 229, № 6. стр. 671-677.

BibTeX

@article{51fea0efce9742efa181dd261ccb05ed,
title = "On Probabilities of Moderate Deviations of Empirical Measures for Contiguous Distributions",
abstract = "The large deviation principle for moderate deviation probabilities of empirical measures for contiguous distributions is proved.",
author = "Ermakov, {M. S.}",
note = "Publisher Copyright: {\textcopyright} 2018, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.",
year = "2018",
month = mar,
day = "1",
doi = "10.1007/s10958-018-3706-3",
language = "English",
volume = "229",
pages = "671--677",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - On Probabilities of Moderate Deviations of Empirical Measures for Contiguous Distributions

AU - Ermakov, M. S.

N1 - Publisher Copyright: © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.

PY - 2018/3/1

Y1 - 2018/3/1

N2 - The large deviation principle for moderate deviation probabilities of empirical measures for contiguous distributions is proved.

AB - The large deviation principle for moderate deviation probabilities of empirical measures for contiguous distributions is proved.

UR - http://www.scopus.com/inward/record.url?scp=85042233129&partnerID=8YFLogxK

U2 - 10.1007/s10958-018-3706-3

DO - 10.1007/s10958-018-3706-3

M3 - Article

AN - SCOPUS:85042233129

VL - 229

SP - 671

EP - 677

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 6

ER -

ID: 76836744