DOI

It is shown that the class of perturbations of the semigroup of shifts on L2(ℝ+) by unitary cocycles V with the property V t - I ∈ s2, t ≥ 0 (where s2 is the Hilbert-Schmidt class) contains strongly continuous semigroups of isometric operators, whose unitary parts possess spectral decompositions with the measure being singular with respect to the Lebesgue measure. Thus, we describe also the subclass of strongly continuous groups of unitary operators that are perturbations of the group of shifts on L2 (ℝ) by Markovian cocycles W with the property Wt - I ∈ s2, t ∈ ℝ.

Язык оригиналаанглийский
Страницы (с-по)3269-3273
Число страниц5
ЖурналProceedings of the American Mathematical Society
Том132
Номер выпуска11
DOI
СостояниеОпубликовано - 1 ноя 2004

    Предметные области Scopus

  • Математика (все)
  • Прикладная математика

ID: 32721477