Результаты исследований: Рабочие материалы › рабочие материалы
On minimal crossing number braid diagrams and homogeneous braids. / Alekseev, Ilya; Mamedov, Geidar.
2019. (arXiv).Результаты исследований: Рабочие материалы › рабочие материалы
}
TY - UNPB
T1 - On minimal crossing number braid diagrams and homogeneous braids
AU - Alekseev, Ilya
AU - Mamedov, Geidar
PY - 2019/5/8
Y1 - 2019/5/8
N2 - We study braid diagrams with a minimal number of crossings. Such braid diagrams correspond to geodesic words for the braid groups with standard Artin generators. We prove that a diagram of a homogeneous braid is minimal if and only if it is homogeneous. We conjecture that monoids of homogeneous braids are Artin-Tits monoids and prove that monoids of alternating braids are right-angled Artin monoids. Using this, we give a lower bound on the growth rate of the braid groups.
AB - We study braid diagrams with a minimal number of crossings. Such braid diagrams correspond to geodesic words for the braid groups with standard Artin generators. We prove that a diagram of a homogeneous braid is minimal if and only if it is homogeneous. We conjecture that monoids of homogeneous braids are Artin-Tits monoids and prove that monoids of alternating braids are right-angled Artin monoids. Using this, we give a lower bound on the growth rate of the braid groups.
UR - https://arxiv.org/abs/1905.03210
UR - https://www.semanticscholar.org/paper/On-minimal-crossing-number-braid-diagrams-and-Alekseev-Mamedov/ecbb80729f31a9986885fa35435cbf4e4ca7e406
M3 - Working paper
T3 - arXiv
BT - On minimal crossing number braid diagrams and homogeneous braids
ER -
ID: 75540466