Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On Linear Structure of Non-commutative Operator Graphs. / Amosov, G. G.; Mokeev, A. S.
в: Lobachevskii Journal of Mathematics, Том 40, № 10, 01.10.2019, стр. 1440-1443.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On Linear Structure of Non-commutative Operator Graphs
AU - Amosov, G. G.
AU - Mokeev, A. S.
N1 - Amosov, G.G., Mokeev, A.S. On Linear Structure of Non-commutative Operator Graphs. Lobachevskii J Math 40, 1440–1443 (2019) doi:10.1134/S1995080219100032
PY - 2019/10/1
Y1 - 2019/10/1
N2 - We continue the study of non-commutative operator graphs generated by resolutions of identity covariant with respect to unitary actions of the circle group and the Heisenber-Weyl group as well. It is shown that the graphs generated by the circle group has the system of unitary generators fulfilling permutations of basis vectors. For the graph generated by the Heisenberg-Weyl group the explicit formula for a dimension is given. Thus, we found a new description of the linear structure for the operator graphs introduced in our previous works.
AB - We continue the study of non-commutative operator graphs generated by resolutions of identity covariant with respect to unitary actions of the circle group and the Heisenber-Weyl group as well. It is shown that the graphs generated by the circle group has the system of unitary generators fulfilling permutations of basis vectors. For the graph generated by the Heisenberg-Weyl group the explicit formula for a dimension is given. Thus, we found a new description of the linear structure for the operator graphs introduced in our previous works.
KW - covariant resolution of identity
KW - non-commutative operator graphs
KW - quantum anticliques
UR - http://www.scopus.com/inward/record.url?scp=85073500548&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/linear-structure-noncommutative-operator-graphs
U2 - 10.1134/S1995080219100032
DO - 10.1134/S1995080219100032
M3 - Article
AN - SCOPUS:85073500548
VL - 40
SP - 1440
EP - 1443
JO - Lobachevskii Journal of Mathematics
JF - Lobachevskii Journal of Mathematics
SN - 1995-0802
IS - 10
ER -
ID: 49791171