Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
On Linear Spline Wavelets with Shifted Supports. / Makarova, Svetlana; Makarov, Anton.
Numerical Computations: Theory and Algorithms. ред. / Yaroslav D. Sergeyev; Dmitri E. Kvasov; Yaroslav D. Sergeyev; Dmitri E. Kvasov. Cham : Springer Nature, 2020. стр. 430-437 (Lecture Notes in Computer Science; Том 11974 ).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - On Linear Spline Wavelets with Shifted Supports
AU - Makarova, Svetlana
AU - Makarov, Anton
N1 - Makarova S., Makarov A. (2020) On Linear Spline Wavelets with Shifted Supports. In: Sergeyev Y., Kvasov D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science, vol 11974. Springer, Cham
PY - 2020
Y1 - 2020
N2 - We examine Faber’s type decompositions for spaces of linear minimal splines constructed on nonuniform grids on a segment. A characteristic feature of the Faber decomposition is that the basis wavelets are centered around the knots that do not belong to the coarse grid. The construction of the lazy wavelets begins with the use of the basis functions in refined spline space centered at the odd knots. We propose to use as wavelets the functions centered at the even knots under some conditions. In contrast to lazy wavelets, in this case the decomposition system of equations has a unique solution, which can be found by the sweep method with the guarantee of well-posedness and stability.
AB - We examine Faber’s type decompositions for spaces of linear minimal splines constructed on nonuniform grids on a segment. A characteristic feature of the Faber decomposition is that the basis wavelets are centered around the knots that do not belong to the coarse grid. The construction of the lazy wavelets begins with the use of the basis functions in refined spline space centered at the odd knots. We propose to use as wavelets the functions centered at the even knots under some conditions. In contrast to lazy wavelets, in this case the decomposition system of equations has a unique solution, which can be found by the sweep method with the guarantee of well-posedness and stability.
KW - B-spline
KW - Minimal splines
KW - Nonuniform grid
KW - Wavelets
KW - ALGORITHMS
UR - http://www.scopus.com/inward/record.url?scp=85080873764&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/d3d81c08-77db-3198-b6bb-3f39d610f509/
U2 - 10.1007/978-3-030-40616-5_40
DO - 10.1007/978-3-030-40616-5_40
M3 - Conference contribution
AN - SCOPUS:85080873764
SN - 9783030406158
T3 - Lecture Notes in Computer Science
SP - 430
EP - 437
BT - Numerical Computations: Theory and Algorithms
A2 - Sergeyev, Yaroslav D.
A2 - Kvasov, Dmitri E.
A2 - Sergeyev, Yaroslav D.
A2 - Kvasov, Dmitri E.
PB - Springer Nature
CY - Cham
T2 - 3rd Triennial International Conference and Summer School on Numerical Computations: Theory and Algorithms, NUMTA 2019
Y2 - 15 June 2019 through 21 June 2019
ER -
ID: 52285108