DOI

A word is called a palindrome if it is equal to its reversal. In the paper we consider a k-abelian modification of this notion. Two words are called k-abelian equivalent if they contain the same number of occurrences of each factor of length at most k. We say that a word is a k-abelian palindrome if it is k-abelian equivalent to its reversal. A question we deal with is the following: how many distinct palindromes can a word contain? It is well known that a word of length n can contain at most n+1 distinct palindromes as its factors; such words are called rich. On the other hand, there exist infinite words containing only finitely many distinct palindromes as their factors; such words are called poor. It is easy to see that there are no abelian poor words, and there exist words containing Θ(n 2) distinct abelian palindromes. We analyze these notions with respect to k-abelian equivalence. We show that in the k-abelian case there exist poor words containing finitely many distinct k-abelian palindromic factors, and there exist rich words containing Θ(n 2) distinct k-abelian palindromes as their factors. Therefore, for poor words the situation resembles normal words, while for rich words it is similar to the abelian case.

Язык оригиналаанглийский
Название основной публикацииDevelopments in Language Theory - 18th International Conference, DLT 2014, Proceedings
ИздательSpringer Nature
Страницы191-202
Число страниц12
ISBN (печатное издание)9783319096971
DOI
СостояниеОпубликовано - 1 янв 2014
Событие18th International Conference on Developments in Language Theory, DLT 2014 - Ekaterinburg, Российская Федерация
Продолжительность: 26 авг 201429 авг 2014

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том8633 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция18th International Conference on Developments in Language Theory, DLT 2014
Страна/TерриторияРоссийская Федерация
ГородEkaterinburg
Период26/08/1429/08/14

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 41130063