Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On Justification of the Asymptotics of Eigenfunctions of the Absolutely Continuous Spectrum in the Problem of Three One-Dimensional Short-Range Quantum Particles with Repulsion. / Baibulov, I. V.; Budylin, A. M.; Levin, S. B.
в: Journal of Mathematical Sciences (United States), Том 238, № 5, 07.05.2019, стр. 566-590.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On Justification of the Asymptotics of Eigenfunctions of the Absolutely Continuous Spectrum in the Problem of Three One-Dimensional Short-Range Quantum Particles with Repulsion
AU - Baibulov, I. V.
AU - Budylin, A. M.
AU - Levin, S. B.
N1 - Publisher Copyright: © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2019/5/7
Y1 - 2019/5/7
N2 - The present paper offers a new approach to the construction of the coordinate asymptotics of the kernel of the resolvent of the Schrödinger operator in the scattering problem of three onedimensional quantum particles with short-range pair potentials. Within the framework of this approach, the asymptotics of eigenfunctions of the absolutely continuous spectrum of the Schrödinger operator can be constructed. In the paper, the possibility of a generalization of the suggested approach to the case of the scattering problem of N particles with arbitrary masses is discussed.
AB - The present paper offers a new approach to the construction of the coordinate asymptotics of the kernel of the resolvent of the Schrödinger operator in the scattering problem of three onedimensional quantum particles with short-range pair potentials. Within the framework of this approach, the asymptotics of eigenfunctions of the absolutely continuous spectrum of the Schrödinger operator can be constructed. In the paper, the possibility of a generalization of the suggested approach to the case of the scattering problem of N particles with arbitrary masses is discussed.
UR - http://www.scopus.com/inward/record.url?scp=85064899165&partnerID=8YFLogxK
U2 - 10.1007/s10958-019-04258-1
DO - 10.1007/s10958-019-04258-1
M3 - Article
AN - SCOPUS:85064899165
VL - 238
SP - 566
EP - 590
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 5
ER -
ID: 40058064