DOI

We study five different types of the homology of a Lie algebra over a commutative ring which are naturally isomorphic over fields. We show that they are not isomorphic over commutative rings, even over Z, and study connections between them. In particular, we show that they are naturally isomorphic in the case of a Lie algebra which is flat as a module. As an auxiliary result we prove that the Koszul complex of a module M over a principal ideal domain that connects the exterior and the symmetric powers 0→ΛnM→M⊗Λn−1M→…→Sn−1M⊗M→SnM→0 is purely acyclic.

Язык оригиналаанглийский
Страницы (с-по)99-139
Число страниц41
ЖурналJournal of Algebra
Том586
DOI
СостояниеОпубликовано - 15 ноя 2021

    Предметные области Scopus

  • Алгебра и теория чисел

ID: 90650843