We consider an operator~$\mathcal{A}^{\varepsilon}$ on $L_{2}(\mathbb{R}^{d_{1}}\times\mathbb{T}^{d_{2}})$ ($d_{1}$~is positive, while $d_{2}$ can be zero) given by $\mathcal{A}^{\varepsilon}=D^{*}A\rbr{\varepsilon^{-1}x_{1},x_{2}}\,D$ where $A$ is periodic in the first variable and smooth in a sense in the second. We present approximations for $(\mathcal{A}^{\varepsilon}-\mu)^{-1}$ and~$D(\mathcal{A}^{\varepsilon}-\mu)^{-1}$ (with an appropriate~$\mu$) in the operator norm when $\varepsilon$ is small. We also provide estimates for the rates of approximation that are sharp with respect to the order.
Язык оригиналаанглийский
Страницы (с-по)71–75
ЖурналFunctional Analysis and its Applications
Том50
Номер выпуска1
DOI
СостояниеОпубликовано - 2016

ID: 7559600