Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On homogenization for non-self-adjoint locally periodic elliptic operators. / Senik, N. N.
в: Functional Analysis and its Applications, Том 51, № 2, 2017, стр. 152-156.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On homogenization for non-self-adjoint locally periodic elliptic operators
AU - Senik, N. N.
PY - 2017
Y1 - 2017
N2 - In this note we consider the homogenization problem for a matrix locally periodic elliptic operator on Rd of the form Aε = −divA(x, x/ε)∇. The function A is assumed to be Hölder continuous with exponent s ∈ [0, 1] in the “slow” variable and bounded in the “fast” variable. We construct approximations for (Aε − μ)−1, including one with a corrector, and for (−Δ)s/2(Aε − μ)−1 in the operator norm on L2(Rd)n. For s ≠ 0, we also give estimates of the rates of approximation.
AB - In this note we consider the homogenization problem for a matrix locally periodic elliptic operator on Rd of the form Aε = −divA(x, x/ε)∇. The function A is assumed to be Hölder continuous with exponent s ∈ [0, 1] in the “slow” variable and bounded in the “fast” variable. We construct approximations for (Aε − μ)−1, including one with a corrector, and for (−Δ)s/2(Aε − μ)−1 in the operator norm on L2(Rd)n. For s ≠ 0, we also give estimates of the rates of approximation.
KW - теория усреднения
KW - операторные оценки погрешности
KW - локально периодические операторы
KW - эффективный оператор
KW - корректор
UR - http://mi.mathnet.ru/faa3457
U2 - 10.1007/s10688-017-0178-z
DO - 10.1007/s10688-017-0178-z
M3 - Article
VL - 51
SP - 152
EP - 156
JO - Functional Analysis and its Applications
JF - Functional Analysis and its Applications
SN - 0016-2663
IS - 2
ER -
ID: 7754872