DOI

Let M be a compact Riemannian manifold with boundary. We show that M is Gromov-Hausdorff close to a convex Euclidean region D of the same dimension if the boundary distance function of M is C1 -close to that of D. More generally, we prove the same result under the assumptions that the boundary distance function of M is C0 -close to that of D, the volumes of M and D are almost equal, and volumes of metric balls in M have a certain lower bound in terms of radius.

Язык оригиналаанглийский
Страницы (с-по)677-697
Число страниц21
ЖурналGeometry and Topology
Том15
Номер выпуска2
DOI
СостояниеОпубликовано - 30 мая 2011

    Предметные области Scopus

  • Геометрия и топология

ID: 49983834