Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Abstract: An explicit representation of filter banks is obtained for constructing wavelet transforms of spaces of linear minimal splines on nonuniform grids on a segment. Decomposition and reconstruction operators are constructed, and it is proved that they are mutually inverse. Some interrelations between the corresponding filters are established. The approach to constructing spline wavelet decompositions used in the present paper is based on using the approximating relations as initial structures for constructing spaces of minimal splines and the calibration relations to prove that the corresponding spaces are embedded An advantage of the approach is the possibility of using nonuniform grids and arbitrary nonpolynomial spline wavelets without using the formalism of Hilbert spaces.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 258-268 |
Число страниц | 11 |
Журнал | Numerical Analysis and Applications |
Том | 14 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - авг 2021 |
ID: 85563445