Standard

On Estimation of the Values of Jumps for Discrete Distribution Functions. / Frolov, A.N.

в: Vestnik St. Petersburg University: Mathematics, Том 57, № 3, 01.09.2024, стр. 353-359.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Frolov, AN 2024, 'On Estimation of the Values of Jumps for Discrete Distribution Functions', Vestnik St. Petersburg University: Mathematics, Том. 57, № 3, стр. 353-359. https://doi.org/10.1134/s1063454124700201

APA

Vancouver

Frolov AN. On Estimation of the Values of Jumps for Discrete Distribution Functions. Vestnik St. Petersburg University: Mathematics. 2024 Сент. 1;57(3):353-359. https://doi.org/10.1134/s1063454124700201

Author

Frolov, A.N. / On Estimation of the Values of Jumps for Discrete Distribution Functions. в: Vestnik St. Petersburg University: Mathematics. 2024 ; Том 57, № 3. стр. 353-359.

BibTeX

@article{9474525a245c4c6cab610018061d810b,
title = "On Estimation of the Values of Jumps for Discrete Distribution Functions",
abstract = "New inequalities for the values of jumps of discrete distribution functions are obtained. The values of jumps are estimated by linear combinations of a finite number of moments of the distributions involved. The obtained inequalities can be used for statistical estimation of the ranges of values of improbable jumps when the frequencies are zero and are not interesting as estimates. The relation of the proved inequalities to the inequalities for probabilities of unions and Cauchy–Bunyakovski and H{\"o}lder{\textquoteright}s inequalities is discussed. {\textcopyright} Pleiades Publishing, Ltd. 2024.",
keywords = "Bonferroni inequalities, Cauchy–Bunyakovsky inequality, H{\"o}lder{\textquoteright}s inequality, probabilities of combinations of events, probabilities of unions of events, value of a distribution-function jump",
author = "A.N. Frolov",
note = "Export Date: 21 October 2024 Адрес для корреспонденции: Frolov, A.N.; St. Petersburg State UniversityRussian Federation; эл. почта: Andrei.Frolov@pobox.spbu.ru Сведения о финансировании: Russian Science Foundation, RSF, 23-21-00078 Текст о финансировании 1: This work is supported by the Russian Science Foundation (project no. 23-21-00078).",
year = "2024",
month = sep,
day = "1",
doi = "10.1134/s1063454124700201",
language = "Английский",
volume = "57",
pages = "353--359",
journal = "Vestnik St. Petersburg University: Mathematics",
issn = "1063-4541",
publisher = "Pleiades Publishing",
number = "3",

}

RIS

TY - JOUR

T1 - On Estimation of the Values of Jumps for Discrete Distribution Functions

AU - Frolov, A.N.

N1 - Export Date: 21 October 2024 Адрес для корреспонденции: Frolov, A.N.; St. Petersburg State UniversityRussian Federation; эл. почта: Andrei.Frolov@pobox.spbu.ru Сведения о финансировании: Russian Science Foundation, RSF, 23-21-00078 Текст о финансировании 1: This work is supported by the Russian Science Foundation (project no. 23-21-00078).

PY - 2024/9/1

Y1 - 2024/9/1

N2 - New inequalities for the values of jumps of discrete distribution functions are obtained. The values of jumps are estimated by linear combinations of a finite number of moments of the distributions involved. The obtained inequalities can be used for statistical estimation of the ranges of values of improbable jumps when the frequencies are zero and are not interesting as estimates. The relation of the proved inequalities to the inequalities for probabilities of unions and Cauchy–Bunyakovski and Hölder’s inequalities is discussed. © Pleiades Publishing, Ltd. 2024.

AB - New inequalities for the values of jumps of discrete distribution functions are obtained. The values of jumps are estimated by linear combinations of a finite number of moments of the distributions involved. The obtained inequalities can be used for statistical estimation of the ranges of values of improbable jumps when the frequencies are zero and are not interesting as estimates. The relation of the proved inequalities to the inequalities for probabilities of unions and Cauchy–Bunyakovski and Hölder’s inequalities is discussed. © Pleiades Publishing, Ltd. 2024.

KW - Bonferroni inequalities

KW - Cauchy–Bunyakovsky inequality

KW - Hölder’s inequality

KW - probabilities of combinations of events

KW - probabilities of unions of events

KW - value of a distribution-function jump

UR - https://www.mendeley.com/catalogue/b0d90165-3c7d-3a8a-a1d5-e2ada4fc2e8d/

U2 - 10.1134/s1063454124700201

DO - 10.1134/s1063454124700201

M3 - статья

VL - 57

SP - 353

EP - 359

JO - Vestnik St. Petersburg University: Mathematics

JF - Vestnik St. Petersburg University: Mathematics

SN - 1063-4541

IS - 3

ER -

ID: 126219193