Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
On estimation algorithms in nonparametric analysis of the current status right-censored data. / Malova, I.Yu.; Малов, Сергей Васильевич.
Applied Methods of Statistical Analysis. Statistical Computation and Simulation : Proceedings of the International Workshop AMSA'19 . ред. / Boris Lemeshko; Mikhail Nikulin; Narayanaswamy Balakrishnan. Novosibirsk : Новосибирский государственный технический университет, 2019. стр. 74-84.Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - On estimation algorithms in nonparametric analysis of the current status right-censored data
AU - Malova, I.Yu.
AU - Малов, Сергей Васильевич
PY - 2019
Y1 - 2019
N2 - We consider nonparametric estimation algorithms for current status rightcensored data model. In the model right-censored event times are not observed exactly, but at some inspection times. The model covers right-censored data, current status data and life table survival data with a single inspection time. We consider the nonparametric estimation algorithms to obtain three nonparametric estimators for the survival function of failure time: maximum likelihood, pseudo maximum likelihood and the naïve estimator. We discuss large sample properties of the estimators. Using the standard R packages we perform simulations, which compare the estimators under small and moderate sample sizes.
AB - We consider nonparametric estimation algorithms for current status rightcensored data model. In the model right-censored event times are not observed exactly, but at some inspection times. The model covers right-censored data, current status data and life table survival data with a single inspection time. We consider the nonparametric estimation algorithms to obtain three nonparametric estimators for the survival function of failure time: maximum likelihood, pseudo maximum likelihood and the naïve estimator. We discuss large sample properties of the estimators. Using the standard R packages we perform simulations, which compare the estimators under small and moderate sample sizes.
KW - survival data
KW - right censoring
KW - interval censoring
KW - current status data
KW - nonparametric estimation
UR - http://www.amsa.conf.nstu.ru/amsa2019/proceedings/AMSA2019-proceedings.pdf
UR - https://www.elibrary.ru/item.asp?id=41186611
M3 - Conference contribution
SP - 74
EP - 84
BT - Applied Methods of Statistical Analysis. Statistical Computation and Simulation
A2 - Lemeshko, Boris
A2 - Nikulin, Mikhail
A2 - Balakrishnan, Narayanaswamy
PB - Новосибирский государственный технический университет
CY - Novosibirsk
T2 - Applied Methods of Statistical Analysis. Statistical Computation and Simulation
Y2 - 18 September 2019 through 20 September 2019
ER -
ID: 47589570