Standard

On discrete homology of a free pro-group. / Ivanov, Sergei O.; Mikhailov, Roman.

в: Compositio Mathematica, Том 154, № 10, 01.10.2018, стр. 2195-2204.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Ivanov, SO & Mikhailov, R 2018, 'On discrete homology of a free pro-group', Compositio Mathematica, Том. 154, № 10, стр. 2195-2204. https://doi.org/10.1112/S0010437X1800739X

APA

Vancouver

Author

Ivanov, Sergei O. ; Mikhailov, Roman. / On discrete homology of a free pro-group. в: Compositio Mathematica. 2018 ; Том 154, № 10. стр. 2195-2204.

BibTeX

@article{25cef9d75ad949618fef886a38734e81,
title = "On discrete homology of a free pro-group",
abstract = "For a prime , let be a finitely generated free pro- -group of rank at least . We show that the second discrete homology group is an uncountable -vector space. This answers a problem of A. K. Bousfield.",
keywords = "completion, group homology, profinite group",
author = "Ivanov, {Sergei O.} and Roman Mikhailov",
year = "2018",
month = oct,
day = "1",
doi = "10.1112/S0010437X1800739X",
language = "English",
volume = "154",
pages = "2195--2204",
journal = "Compositio Mathematica",
issn = "0010-437X",
publisher = "Cambridge University Press",
number = "10",

}

RIS

TY - JOUR

T1 - On discrete homology of a free pro-group

AU - Ivanov, Sergei O.

AU - Mikhailov, Roman

PY - 2018/10/1

Y1 - 2018/10/1

N2 - For a prime , let be a finitely generated free pro- -group of rank at least . We show that the second discrete homology group is an uncountable -vector space. This answers a problem of A. K. Bousfield.

AB - For a prime , let be a finitely generated free pro- -group of rank at least . We show that the second discrete homology group is an uncountable -vector space. This answers a problem of A. K. Bousfield.

KW - completion

KW - group homology

KW - profinite group

UR - http://www.scopus.com/inward/record.url?scp=85064126290&partnerID=8YFLogxK

U2 - 10.1112/S0010437X1800739X

DO - 10.1112/S0010437X1800739X

M3 - Article

AN - SCOPUS:85064126290

VL - 154

SP - 2195

EP - 2204

JO - Compositio Mathematica

JF - Compositio Mathematica

SN - 0010-437X

IS - 10

ER -

ID: 46234043