Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On Degree Spectra of Topological Spaces. / Selivanov, V. L.
в: Lobachevskii Journal of Mathematics, Том 41, № 2, 01.02.2020, стр. 252-259.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On Degree Spectra of Topological Spaces
AU - Selivanov, V. L.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Abstract: The investigation of computability in topological structures develops in some aspects similar to the investigation of computability in algebraic structures. If a countable algebraic structure is not computably presentable then its ‘‘degree of non-computability’’ is measured by the so called degree spectrum, i.e. the set of Turing degrees that compute an isomorphic copy of the structure. In this note we initiate a discussion of similar notions for topological structures, in particular we describe the degree spectra of domains.
AB - Abstract: The investigation of computability in topological structures develops in some aspects similar to the investigation of computability in algebraic structures. If a countable algebraic structure is not computably presentable then its ‘‘degree of non-computability’’ is measured by the so called degree spectrum, i.e. the set of Turing degrees that compute an isomorphic copy of the structure. In this note we initiate a discussion of similar notions for topological structures, in particular we describe the degree spectra of domains.
KW - Algebraic structure
KW - degree spectrum
KW - topological structure
KW - Turing degree
UR - http://www.scopus.com/inward/record.url?scp=85087890495&partnerID=8YFLogxK
U2 - 10.1134/S1995080220020146
DO - 10.1134/S1995080220020146
M3 - Article
AN - SCOPUS:85087890495
VL - 41
SP - 252
EP - 259
JO - Lobachevskii Journal of Mathematics
JF - Lobachevskii Journal of Mathematics
SN - 1995-0802
IS - 2
ER -
ID: 127084344