Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On convex complexity measures. / Hrubeš, P.; Jukna, S.; Kulikov, A.; Pudlák, P.
в: Theoretical Computer Science, Том 411, № 16-18, 28.03.2010, стр. 1842-1854.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On convex complexity measures
AU - Hrubeš, P.
AU - Jukna, S.
AU - Kulikov, A.
AU - Pudlák, P.
PY - 2010/3/28
Y1 - 2010/3/28
N2 - Khrapchenko's classical lower bound n2 on the formula size of the parity function f can be interpreted as designing a suitable measure of sub-rectangles of the combinatorial rectangle f- 1 (0) × f- 1 (1). Trying to generalize this approach we arrived at the concept of convex measures. We prove the negative result that convex measures are bounded by O (n2) and show that several measures considered for proving lower bounds on the formula size are convex. We also prove quadratic upper bounds on a class of measures that are not necessarily convex.
AB - Khrapchenko's classical lower bound n2 on the formula size of the parity function f can be interpreted as designing a suitable measure of sub-rectangles of the combinatorial rectangle f- 1 (0) × f- 1 (1). Trying to generalize this approach we arrived at the concept of convex measures. We prove the negative result that convex measures are bounded by O (n2) and show that several measures considered for proving lower bounds on the formula size are convex. We also prove quadratic upper bounds on a class of measures that are not necessarily convex.
KW - Boolean formula
KW - Combinatorial rectangle
KW - Complexity measure
KW - Convexity
KW - Matrix norm
KW - Rank
UR - http://www.scopus.com/inward/record.url?scp=77949275187&partnerID=8YFLogxK
U2 - 10.1016/j.tcs.2010.02.004
DO - 10.1016/j.tcs.2010.02.004
M3 - Article
AN - SCOPUS:77949275187
VL - 411
SP - 1842
EP - 1854
JO - Theoretical Computer Science
JF - Theoretical Computer Science
SN - 0304-3975
IS - 16-18
ER -
ID: 49825643