Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We propose a new method for proving Jackson type inequalities for not necessarily periodic functions defined on the whole real line. In the inequalities under consideration, the best approximations by entire functions of exponential type are estimated in terms of the moduli of continuity of the derivatives of the approximated function. For some values of the parameters the obtained constants are less than the known ones. We construct linear approximation methods for realizing the obtained inequalities.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 353-365 |
Число страниц | 13 |
Журнал | Journal of Mathematical Sciences (United States) |
Том | 261 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - 7 мар 2022 |
ID: 101356395