DOI

For s>−1, s∉N0, we compare two natural types of fractional Laplacians (−Δ)s, namely, the restricted Dirichlet and the spectral Neumann ones. We show that the quadratic form of their difference taken on the space H˜s(Ω) is positive or negative depending on whether the integer part of s is even or odd. For s∈(0,1) and convex domains we prove also that the difference of these operators is positivity preserving on H˜s(Ω). This paper complements (Musina and Nazarov, 2014; 2016) where similar statements were proved for the spectral Dirichlet and the restricted Dirichlet fractional Laplacians.

Язык оригиналаанглийский
Номер статьи112790
ЖурналNonlinear Analysis, Theory, Methods and Applications
Том218
DOI
СостояниеОпубликовано - мая 2022

    Предметные области Scopus

  • Анализ
  • Прикладная математика

ID: 93227507