Standard

On commensurability of right-angled Artin groups I: RAAGs defined by trees of diameter 4. / Casals-Ruiz, Montserrat; Kazachkov, Ilya ; Zakharov, Alexander .

в: Revista Matematica Iberoamericana, Том 35, № 2, 2019, стр. 521-560.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Casals-Ruiz, M, Kazachkov, I & Zakharov, A 2019, 'On commensurability of right-angled Artin groups I: RAAGs defined by trees of diameter 4', Revista Matematica Iberoamericana, Том. 35, № 2, стр. 521-560. https://doi.org/10.4171/rmi/1061

APA

Casals-Ruiz, M., Kazachkov, I., & Zakharov, A. (2019). On commensurability of right-angled Artin groups I: RAAGs defined by trees of diameter 4. Revista Matematica Iberoamericana, 35(2), 521-560. https://doi.org/10.4171/rmi/1061

Vancouver

Author

Casals-Ruiz, Montserrat ; Kazachkov, Ilya ; Zakharov, Alexander . / On commensurability of right-angled Artin groups I: RAAGs defined by trees of diameter 4. в: Revista Matematica Iberoamericana. 2019 ; Том 35, № 2. стр. 521-560.

BibTeX

@article{997cb2744de949e6b56fec78f68c0050,
title = "On commensurability of right-angled Artin groups I: RAAGs defined by trees of diameter 4",
abstract = "In this paper we study the classification of right-angled Artin groups up to commensurability. We characterise the commensurability classes of RAAGs defined by trees of diameter 4. In particular, we prove a conjecture of Behrstock and Neumann that there are infinitely many commensurability classes of such RAAGs.",
keywords = "Commensurability, Quasi-isometries, Right-angled Artin groups",
author = "Montserrat Casals-Ruiz and Ilya Kazachkov and Alexander Zakharov",
year = "2019",
doi = "10.4171/rmi/1061",
language = "English",
volume = "35",
pages = "521--560",
journal = "Revista Matematica Iberoamericana",
issn = "0213-2230",
publisher = "Universidad Autonoma de Madrid",
number = "2",

}

RIS

TY - JOUR

T1 - On commensurability of right-angled Artin groups I: RAAGs defined by trees of diameter 4

AU - Casals-Ruiz, Montserrat

AU - Kazachkov, Ilya

AU - Zakharov, Alexander

PY - 2019

Y1 - 2019

N2 - In this paper we study the classification of right-angled Artin groups up to commensurability. We characterise the commensurability classes of RAAGs defined by trees of diameter 4. In particular, we prove a conjecture of Behrstock and Neumann that there are infinitely many commensurability classes of such RAAGs.

AB - In this paper we study the classification of right-angled Artin groups up to commensurability. We characterise the commensurability classes of RAAGs defined by trees of diameter 4. In particular, we prove a conjecture of Behrstock and Neumann that there are infinitely many commensurability classes of such RAAGs.

KW - Commensurability

KW - Quasi-isometries

KW - Right-angled Artin groups

UR - http://www.scopus.com/inward/record.url?scp=85068464946&partnerID=8YFLogxK

U2 - 10.4171/rmi/1061

DO - 10.4171/rmi/1061

M3 - Article

VL - 35

SP - 521

EP - 560

JO - Revista Matematica Iberoamericana

JF - Revista Matematica Iberoamericana

SN - 0213-2230

IS - 2

ER -

ID: 49862643