Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On commensurability of right-angled Artin groups I: RAAGs defined by trees of diameter 4. / Casals-Ruiz, Montserrat; Kazachkov, Ilya ; Zakharov, Alexander .
в: Revista Matematica Iberoamericana, Том 35, № 2, 2019, стр. 521-560.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On commensurability of right-angled Artin groups I: RAAGs defined by trees of diameter 4
AU - Casals-Ruiz, Montserrat
AU - Kazachkov, Ilya
AU - Zakharov, Alexander
PY - 2019
Y1 - 2019
N2 - In this paper we study the classification of right-angled Artin groups up to commensurability. We characterise the commensurability classes of RAAGs defined by trees of diameter 4. In particular, we prove a conjecture of Behrstock and Neumann that there are infinitely many commensurability classes of such RAAGs.
AB - In this paper we study the classification of right-angled Artin groups up to commensurability. We characterise the commensurability classes of RAAGs defined by trees of diameter 4. In particular, we prove a conjecture of Behrstock and Neumann that there are infinitely many commensurability classes of such RAAGs.
KW - Commensurability
KW - Quasi-isometries
KW - Right-angled Artin groups
UR - http://www.scopus.com/inward/record.url?scp=85068464946&partnerID=8YFLogxK
U2 - 10.4171/rmi/1061
DO - 10.4171/rmi/1061
M3 - Article
VL - 35
SP - 521
EP - 560
JO - Revista Matematica Iberoamericana
JF - Revista Matematica Iberoamericana
SN - 0213-2230
IS - 2
ER -
ID: 49862643