Standard

On classical r-matrix for the Kowalevski gyrostat on so(4). / Komarov, Igor V.; Tsiganov, Andrey V.

в: Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), Том 2, 012, 2006.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Komarov, IV & Tsiganov, AV 2006, 'On classical r-matrix for the Kowalevski gyrostat on so(4)', Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), Том. 2, 012. https://doi.org/10.3842/SIGMA.2006.012

APA

Komarov, I. V., & Tsiganov, A. V. (2006). On classical r-matrix for the Kowalevski gyrostat on so(4). Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 2, [012]. https://doi.org/10.3842/SIGMA.2006.012

Vancouver

Komarov IV, Tsiganov AV. On classical r-matrix for the Kowalevski gyrostat on so(4). Symmetry, Integrability and Geometry: Methods and Applications (SIGMA). 2006;2. 012. https://doi.org/10.3842/SIGMA.2006.012

Author

Komarov, Igor V. ; Tsiganov, Andrey V. / On classical r-matrix for the Kowalevski gyrostat on so(4). в: Symmetry, Integrability and Geometry: Methods and Applications (SIGMA). 2006 ; Том 2.

BibTeX

@article{4c72811dfb654f34a2bb20730f83ccaa,
title = "On classical r-matrix for the Kowalevski gyrostat on so(4)",
abstract = "We present the trigonometric Lax matrix and classical r-matrix for the Kowalevski gyrostat on so(4) algebra by using the auxiliary matrix algebras so(3, 2) or sp(4).",
keywords = "Classical r-matrix, Kowalevski top, Lax matrices",
author = "Komarov, {Igor V.} and Tsiganov, {Andrey V.}",
year = "2006",
doi = "10.3842/SIGMA.2006.012",
language = "English",
volume = "2",
journal = "Symmetry, Integrability and Geometry - Methods and Applications",
issn = "1815-0659",
publisher = "Department of Applied Research, Institute of Mathematics of National Academy of Science of Ukraine",

}

RIS

TY - JOUR

T1 - On classical r-matrix for the Kowalevski gyrostat on so(4)

AU - Komarov, Igor V.

AU - Tsiganov, Andrey V.

PY - 2006

Y1 - 2006

N2 - We present the trigonometric Lax matrix and classical r-matrix for the Kowalevski gyrostat on so(4) algebra by using the auxiliary matrix algebras so(3, 2) or sp(4).

AB - We present the trigonometric Lax matrix and classical r-matrix for the Kowalevski gyrostat on so(4) algebra by using the auxiliary matrix algebras so(3, 2) or sp(4).

KW - Classical r-matrix

KW - Kowalevski top

KW - Lax matrices

UR - http://www.scopus.com/inward/record.url?scp=84889234996&partnerID=8YFLogxK

U2 - 10.3842/SIGMA.2006.012

DO - 10.3842/SIGMA.2006.012

M3 - Article

AN - SCOPUS:84889234996

VL - 2

JO - Symmetry, Integrability and Geometry - Methods and Applications

JF - Symmetry, Integrability and Geometry - Methods and Applications

SN - 1815-0659

M1 - 012

ER -

ID: 8484208