Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Let {(Xi, Yi)} be a sequence of independent equidistributed random, vectors with P(Y1 = 1) = p = 1 - P(Y 1 = 0) ∈ (0,1). Let Mn(j) = max 0≤k≤n-j(Xk+1 + ⋯ + Xk+j)I k,j , where Ik,j = I{Yk+1 = ⋯ = Y k+j = 1} and I{·} denotes the indicator function of the event in brackets. If, for example, {Xi} are the gains and {Yi} are the indicators of success in repetitions of a game of chance, then M n(j) is the maximal gain along head runs (sequences of successes without interruptions) of length j. We investigate the asymptotic behavior of the values Mn(j), j = jn ≤ Ln, where L n is the length of the longest head run in Y1, . . . ,Yn. We show that the asymptotics of the values Mn(j) depend significantly on the growth rate of j and that these asymptotics vary from the strong noninvariance (as in the Erdos-Rényi law of large numbers) to the strong invariance (as in the Csörgo-Révész strong approximation laws). We also consider the Shepp-type statistics.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 2229-2240 |
Число страниц | 12 |
Журнал | Journal of Mathematical Sciences |
Том | 109 |
Номер выпуска | 6 |
DOI | |
Состояние | Опубликовано - 2002 |
ID: 75021290