Standard

On an Asymptotic Property of Divisor τ-Function. / Hakobyan, T.; Vostokov, S.

в: Lobachevskii Journal of Mathematics, Том 39, № 1, 01.01.2018, стр. 77-83.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Hakobyan, T & Vostokov, S 2018, 'On an Asymptotic Property of Divisor τ-Function', Lobachevskii Journal of Mathematics, Том. 39, № 1, стр. 77-83. https://doi.org/10.1134/S1995080218010134

APA

Vancouver

Author

Hakobyan, T. ; Vostokov, S. / On an Asymptotic Property of Divisor τ-Function. в: Lobachevskii Journal of Mathematics. 2018 ; Том 39, № 1. стр. 77-83.

BibTeX

@article{2fa64150783544d4810fae14af618b60,
title = "On an Asymptotic Property of Divisor τ-Function",
abstract = "In this paper for μ > 0 we study an asymptotic behavior of the sequence defined as Tn(μ) = (τ(n))−1max1≤t≤[n1/μ] {τ(n + t)}, where τ(n) denotes the number of natural divisors of given positive integer n. The motivation of this observation is to explore whether τ-function oscillates rapidly.",
keywords = "Derichlet{\textquoteright}s divisor problem, divisor, Prime Number Theorem, Stirling{\textquoteright}s formula, τ-function",
author = "T. Hakobyan and S. Vostokov",
note = "Funding Information: Research is supported by the Russian Science Foundation grant 1716-11-10200. remarkable mathematician and wonderful person Sergei Evdokimov. Publisher Copyright: {\textcopyright} 2018, Pleiades Publishing, Ltd. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.",
year = "2018",
month = jan,
day = "1",
doi = "10.1134/S1995080218010134",
language = "English",
volume = "39",
pages = "77--83",
journal = "Lobachevskii Journal of Mathematics",
issn = "1995-0802",
publisher = "Pleiades Publishing",
number = "1",

}

RIS

TY - JOUR

T1 - On an Asymptotic Property of Divisor τ-Function

AU - Hakobyan, T.

AU - Vostokov, S.

N1 - Funding Information: Research is supported by the Russian Science Foundation grant 1716-11-10200. remarkable mathematician and wonderful person Sergei Evdokimov. Publisher Copyright: © 2018, Pleiades Publishing, Ltd. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - In this paper for μ > 0 we study an asymptotic behavior of the sequence defined as Tn(μ) = (τ(n))−1max1≤t≤[n1/μ] {τ(n + t)}, where τ(n) denotes the number of natural divisors of given positive integer n. The motivation of this observation is to explore whether τ-function oscillates rapidly.

AB - In this paper for μ > 0 we study an asymptotic behavior of the sequence defined as Tn(μ) = (τ(n))−1max1≤t≤[n1/μ] {τ(n + t)}, where τ(n) denotes the number of natural divisors of given positive integer n. The motivation of this observation is to explore whether τ-function oscillates rapidly.

KW - Derichlet’s divisor problem

KW - divisor

KW - Prime Number Theorem

KW - Stirling’s formula

KW - τ-function

UR - http://www.scopus.com/inward/record.url?scp=85042062646&partnerID=8YFLogxK

U2 - 10.1134/S1995080218010134

DO - 10.1134/S1995080218010134

M3 - Article

AN - SCOPUS:85042062646

VL - 39

SP - 77

EP - 83

JO - Lobachevskii Journal of Mathematics

JF - Lobachevskii Journal of Mathematics

SN - 1995-0802

IS - 1

ER -

ID: 15767103