Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
A sequence of independent non-identically distributed random variables is considered. Asymptotical behavior with probability 1 of maximal increments of theirs sums is studied. Exact convergence rates in the Erdos-Renyi law are found, and the Shepp law is proved. A version of the Erdos-Renyi law is obtained when Cramer's condition is replaced by the Linnik's condition from the probability theory of large deviations. The behavior of increments of different lengths is studied.
| Язык оригинала | русский |
|---|---|
| Страницы (с-по) | 45-48 |
| Число страниц | 4 |
| Журнал | Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya |
| Номер выпуска | 4 |
| Состояние | Опубликовано - окт 1993 |
ID: 75020338