Standard

On a Universal Borel Adic Space. / Vershik, A. M.; Zatitskii, P. B.

в: Journal of Mathematical Sciences (United States), Том 240, № 5, 07.08.2019, стр. 515-524.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Vershik, AM & Zatitskii, PB 2019, 'On a Universal Borel Adic Space', Journal of Mathematical Sciences (United States), Том. 240, № 5, стр. 515-524. https://doi.org/10.1007/s10958-019-04369-9

APA

Vershik, A. M., & Zatitskii, P. B. (2019). On a Universal Borel Adic Space. Journal of Mathematical Sciences (United States), 240(5), 515-524. https://doi.org/10.1007/s10958-019-04369-9

Vancouver

Vershik AM, Zatitskii PB. On a Universal Borel Adic Space. Journal of Mathematical Sciences (United States). 2019 Авг. 7;240(5):515-524. https://doi.org/10.1007/s10958-019-04369-9

Author

Vershik, A. M. ; Zatitskii, P. B. / On a Universal Borel Adic Space. в: Journal of Mathematical Sciences (United States). 2019 ; Том 240, № 5. стр. 515-524.

BibTeX

@article{2d28751b096348028360fc8011d3d180,
title = "On a Universal Borel Adic Space",
abstract = "We prove that the so-called uniadic graph and its adic automorphism are Borel universal, i.e., every aperiodic Borel automorphism is isomorphic to the restriction of this automorphism to a subset invariant under the adic transformation, the isomorphism being defined on a universal (with respect to the measure) set. We develop the concept of basic filtrations and combinatorial definiteness of automorphisms suggested in our previous paper.",
author = "Vershik, {A. M.} and Zatitskii, {P. B.}",
note = "Publisher Copyright: {\textcopyright} 2019, Springer Science+Business Media, LLC, part of Springer Nature.",
year = "2019",
month = aug,
day = "7",
doi = "10.1007/s10958-019-04369-9",
language = "English",
volume = "240",
pages = "515--524",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - On a Universal Borel Adic Space

AU - Vershik, A. M.

AU - Zatitskii, P. B.

N1 - Publisher Copyright: © 2019, Springer Science+Business Media, LLC, part of Springer Nature.

PY - 2019/8/7

Y1 - 2019/8/7

N2 - We prove that the so-called uniadic graph and its adic automorphism are Borel universal, i.e., every aperiodic Borel automorphism is isomorphic to the restriction of this automorphism to a subset invariant under the adic transformation, the isomorphism being defined on a universal (with respect to the measure) set. We develop the concept of basic filtrations and combinatorial definiteness of automorphisms suggested in our previous paper.

AB - We prove that the so-called uniadic graph and its adic automorphism are Borel universal, i.e., every aperiodic Borel automorphism is isomorphic to the restriction of this automorphism to a subset invariant under the adic transformation, the isomorphism being defined on a universal (with respect to the measure) set. We develop the concept of basic filtrations and combinatorial definiteness of automorphisms suggested in our previous paper.

UR - http://www.scopus.com/inward/record.url?scp=85068348744&partnerID=8YFLogxK

U2 - 10.1007/s10958-019-04369-9

DO - 10.1007/s10958-019-04369-9

M3 - Article

AN - SCOPUS:85068348744

VL - 240

SP - 515

EP - 524

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 5

ER -

ID: 88659554