Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
ON A SELF-SIMILAR BEHAVIOR OF LOGARITHMIC SUMS. / Федотов, Александр Александрович; Лукашева, Ирина.
в: Journal of Mathematical Sciences (United States), Том 283, № 4, 01.08.2024, стр. 690-698.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - ON A SELF-SIMILAR BEHAVIOR OF LOGARITHMIC SUMS
AU - Федотов, Александр Александрович
AU - Лукашева, Ирина
PY - 2024/8/1
Y1 - 2024/8/1
N2 - The sums SNω,ζ=∑n-0N-11n1+e-2πiωn+ω2+ζ, where ω and ζ are parameters, are related to trigonometric products from the theory of quasi-periodic operators as well as to a special function kindred to the Malyuzhinets function from the diffraction theory, the hyperbolic Ruijsenaars G-function, which arose in connection with the theory of integrable systems, and the Faddeev quantum dilogarithm, which plays an important role in the knot theory, Teichmuller quantum theory and the complex Chern–Simons theory. Assuming that ω ∈ (0, 1) and ζ ∈ ℂ−, we describe the behavior of logarithmic sums for large N using renormalization formulas similar to those well-known in the theory of Gaussian exponential sums.
AB - The sums SNω,ζ=∑n-0N-11n1+e-2πiωn+ω2+ζ, where ω and ζ are parameters, are related to trigonometric products from the theory of quasi-periodic operators as well as to a special function kindred to the Malyuzhinets function from the diffraction theory, the hyperbolic Ruijsenaars G-function, which arose in connection with the theory of integrable systems, and the Faddeev quantum dilogarithm, which plays an important role in the knot theory, Teichmuller quantum theory and the complex Chern–Simons theory. Assuming that ω ∈ (0, 1) and ζ ∈ ℂ−, we describe the behavior of logarithmic sums for large N using renormalization formulas similar to those well-known in the theory of Gaussian exponential sums.
UR - https://www.mendeley.com/catalogue/695fbf19-c65d-31f2-8bef-4e9ca816de67/
U2 - 10.1007/s10958-024-07301-y
DO - 10.1007/s10958-024-07301-y
M3 - Article
VL - 283
SP - 690
EP - 698
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 4
ER -
ID: 123004040