Standard

On a maximum principle for pseudocontinuable functions. / Александров, Алексей Борисович.

в: Journal of Mathematical Sciences , Том 85, № 2, 1997, стр. 1767-1772.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Александров, АБ 1997, 'On a maximum principle for pseudocontinuable functions', Journal of Mathematical Sciences , Том. 85, № 2, стр. 1767-1772. https://doi.org/10.1007/BF02355285

APA

Vancouver

Author

Александров, Алексей Борисович. / On a maximum principle for pseudocontinuable functions. в: Journal of Mathematical Sciences . 1997 ; Том 85, № 2. стр. 1767-1772.

BibTeX

@article{8b299540ab0a42db9ae994a1b3e498e0,
title = "On a maximum principle for pseudocontinuable functions",
abstract = "Let Θ be an inner function and let α ∈ ℂ, |α| = 1. Denote by σα the nonnegative singular measure whose Poisson integral is equal to Re α+Θ/α-Θ. A theorem of Clark provides a natural unitary operator Uα that identifies H2 ⊖ ΘH2 with L 2(σα). The following fact is established. Assume that f ∈ H2 ⊖ ΘH2, 2 < p ≤ + ∞, α ≠ β. Then ∥f∥Hp ≤ C(α,β,p)(∥Uα f∥Lp(σα) + ∥Uβf∥Lp(σβ)).",
author = "Александров, {Алексей Борисович}",
year = "1997",
doi = "10.1007/BF02355285",
language = "English",
volume = "85",
pages = "1767--1772",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - On a maximum principle for pseudocontinuable functions

AU - Александров, Алексей Борисович

PY - 1997

Y1 - 1997

N2 - Let Θ be an inner function and let α ∈ ℂ, |α| = 1. Denote by σα the nonnegative singular measure whose Poisson integral is equal to Re α+Θ/α-Θ. A theorem of Clark provides a natural unitary operator Uα that identifies H2 ⊖ ΘH2 with L 2(σα). The following fact is established. Assume that f ∈ H2 ⊖ ΘH2, 2 < p ≤ + ∞, α ≠ β. Then ∥f∥Hp ≤ C(α,β,p)(∥Uα f∥Lp(σα) + ∥Uβf∥Lp(σβ)).

AB - Let Θ be an inner function and let α ∈ ℂ, |α| = 1. Denote by σα the nonnegative singular measure whose Poisson integral is equal to Re α+Θ/α-Θ. A theorem of Clark provides a natural unitary operator Uα that identifies H2 ⊖ ΘH2 with L 2(σα). The following fact is established. Assume that f ∈ H2 ⊖ ΘH2, 2 < p ≤ + ∞, α ≠ β. Then ∥f∥Hp ≤ C(α,β,p)(∥Uα f∥Lp(σα) + ∥Uβf∥Lp(σβ)).

UR - http://www.scopus.com/inward/record.url?scp=53249090468&partnerID=8YFLogxK

U2 - 10.1007/BF02355285

DO - 10.1007/BF02355285

M3 - Article

AN - SCOPUS:53249090468

VL - 85

SP - 1767

EP - 1772

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 2

ER -

ID: 87313016