Standard

On a class of quadratic conservation laws for Newton equations in Euclidean space. / Tsiganov, A. V.; Porubov, E. O.

в: Theoretical and Mathematical Physics, Том 216, № 2, 01.08.2023, стр. 1209–1237.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Tsiganov, A. V. ; Porubov, E. O. / On a class of quadratic conservation laws for Newton equations in Euclidean space. в: Theoretical and Mathematical Physics. 2023 ; Том 216, № 2. стр. 1209–1237.

BibTeX

@article{9307b2a314b1472ab6427ef258be6018,
title = "On a class of quadratic conservation laws for Newton equations in Euclidean space",
abstract = "Abstract: We discuss quadratic conservation laws for the Newton equations and the corresponding second-order Killing tensors in Euclidean space. In this case, the complete set of integrals of motion consists of polynomials of the second, fourth, sixth, and so on degrees in momenta, which can be constructed using the Lax matrix related to the hierarchy of the multicomponent nonlinear Schr{\"o}dinger equation.",
keywords = "Killing tensors, integrable systems, symmetric spaces",
author = "Tsiganov, {A. V.} and Porubov, {E. O.}",
year = "2023",
month = aug,
day = "1",
doi = "10.1134/s0040577923080111",
language = "не определен",
volume = "216",
pages = "1209–1237",
journal = "Theoretical and Mathematical Physics (Russian Federation)",
issn = "0040-5779",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - On a class of quadratic conservation laws for Newton equations in Euclidean space

AU - Tsiganov, A. V.

AU - Porubov, E. O.

PY - 2023/8/1

Y1 - 2023/8/1

N2 - Abstract: We discuss quadratic conservation laws for the Newton equations and the corresponding second-order Killing tensors in Euclidean space. In this case, the complete set of integrals of motion consists of polynomials of the second, fourth, sixth, and so on degrees in momenta, which can be constructed using the Lax matrix related to the hierarchy of the multicomponent nonlinear Schrödinger equation.

AB - Abstract: We discuss quadratic conservation laws for the Newton equations and the corresponding second-order Killing tensors in Euclidean space. In this case, the complete set of integrals of motion consists of polynomials of the second, fourth, sixth, and so on degrees in momenta, which can be constructed using the Lax matrix related to the hierarchy of the multicomponent nonlinear Schrödinger equation.

KW - Killing tensors

KW - integrable systems

KW - symmetric spaces

UR - https://www.mendeley.com/catalogue/abc8b8f2-3eb7-308f-8434-f23fcdb0e16f/

U2 - 10.1134/s0040577923080111

DO - 10.1134/s0040577923080111

M3 - статья

VL - 216

SP - 1209

EP - 1237

JO - Theoretical and Mathematical Physics (Russian Federation)

JF - Theoretical and Mathematical Physics (Russian Federation)

SN - 0040-5779

IS - 2

ER -

ID: 111067294