Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We study an elliptic boundary-value problem in a bounded domain with inhomogeneous Dirichlet condition, discontinuous non-linearity and a positive parameter occurring as a factor in the non-linearity. The non-linearity is in the right-hand side of the equation. It is non-positive (resp. equal to zero) for negative (resp, non-negative) values of the phase variable. Letbe a solution of the boundary-value problem with zero right-hand side (the boundary function is assumed to be positive). Putting, we reduce the original problem to a problem with homogeneous boundary condition. The spectrum of the transformed problem consists of the values of the parameter for which this problem has a non-zero solution (the function is a solution for all values of the parameter). Under certain additional restrictions we construct an iterative process converging to a minimal semiregular solution of the transformed problem for an appropriately chosen starting point. We prove that any non-empty spectrum of the boundary-value problem is a ray, where . As an application, we consider the Gol'dshtik mathematical model for separated flows of an incompressible fluid. We show that it satisfies the hypotheses of our theorem and has a non-empty spectrum.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 592-607 |
Число страниц | 16 |
Журнал | Izvestiya Mathematics |
Том | 84 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - июн 2020 |
ID: 62429387