An oscillation in a dynamical system can be easily localized numerically if initial conditions from its open neighborhood in the phase space (with the exception of a minor set of points of measure zero) lead to longtime behavior that approaches the oscillation. From a computational point of view, such an oscillation (or a set of oscillations) is called an attractor and its attracting set is called a basin of attraction (i.e., a set of initial data for which the trajectories numerically tend to the attractor).

Язык оригиналаанглийский
Название основной публикацииHandbook of Applications of Chaos Theory
ИздательTaylor & Francis
Страницы135-143
Число страниц9
ISBN (электронное издание)9781466590441
ISBN (печатное издание)9781466590434
DOI
СостояниеОпубликовано - 1 янв 2017

    Предметные области Scopus

  • Математика (все)

ID: 7548088