DOI

Motivation: Peptidic natural products (PNPs) are considered a promising compound class that has many applications in medicine. Recently developed mass spectrometry-based pipelines are transforming PNP discovery into a high-throughput technology. However, the current computational methods for PNP identification via database search of mass spectra are still in their infancy and could be substantially improved. Results: Here we present NPS, a statistical learning-based approach for scoring PNP-spectrum matches. We incorporated NPS into two leading PNP discovery tools and benchmarked them on millions of natural product mass spectra. The results demonstrate more than 45% increase in the number of identified spectra and 20% more found PNPs at a false discovery rate of 1%.

Язык оригиналаанглийский
Номер статьиbtz374
Страницы (с-по)I315-I323
Число страниц9
ЖурналBioinformatics
Том35
Номер выпуска14
DOI
СостояниеОпубликовано - 15 июл 2019

    Предметные области Scopus

  • Вычислительная математика
  • Молекулярная биология
  • Биохимия
  • Теория вероятности и статистика
  • Прикладные компьютерные науки
  • Математика и теория расчета

ID: 43669243