Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We propose two series of number-theory problems with explicitly marked out parameters related to discongruences modulo m. We find parameter constraints that provide the NP completeness for any problem of every series. For any m > 2, we prove the NP completeness of the verification problem for the consistency of a system of linear discongruences modulo m such that any discongruence contains exactly three variables, including the case where its coefficients belong to {–1, 1}. For any m > 3, we prove the NP completeness of the verification problem for the consistency of a system of linear discongruences modulo m such that any discongruence contains exactly 2 variables. If P ≠ NP, then one cannot change the term 2-discongruence for the term 1-discongruence in the statements of the proven theorems.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 18-22 |
| Число страниц | 5 |
| Журнал | Vestnik St. Petersburg University: Mathematics |
| Том | 49 |
| Номер выпуска | 1 |
| DOI | |
| Состояние | Опубликовано - 1 янв 2016 |
ID: 46401993