DOI

The classical Szego polynomial approximation theorem states that the polynomials are dense in the space L2(ρ), where ρ is a measure on the unit circle, if and only if the logarithmic integral of the measure ρ diverges. In this note we give a quantitative version of Szego's theorem in the special case when the divergence of the logarithmic integral is caused by deep zeroes of the measure ρ on a sufficiently rare subset of the circle.
Язык оригиналаанглийский
Страницы (с-по)725-743
Число страниц19
ЖурналIsrael Journal of Mathematics
Том240
Номер выпуска2
Дата раннего онлайн-доступа27 окт 2020
DOI
СостояниеОпубликовано - окт 2020

    Предметные области Scopus

  • Анализ

ID: 50663480