Standard

Normalizers of Elementary Overgroups of Ep(2, A). / Voronetsky, E. Yu.

в: Journal of Mathematical Sciences (United States), Том 232, № 5, 08.2018, стр. 610-621.

Результаты исследований: Научные публикации в периодических изданияхстатья

Harvard

Voronetsky, EY 2018, 'Normalizers of Elementary Overgroups of Ep(2, A)', Journal of Mathematical Sciences (United States), Том. 232, № 5, стр. 610-621. https://doi.org/10.1007/s10958-018-3892-z

APA

Voronetsky, E. Y. (2018). Normalizers of Elementary Overgroups of Ep(2, A). Journal of Mathematical Sciences (United States), 232(5), 610-621. https://doi.org/10.1007/s10958-018-3892-z

Vancouver

Voronetsky EY. Normalizers of Elementary Overgroups of Ep(2, A). Journal of Mathematical Sciences (United States). 2018 Авг.;232(5):610-621. https://doi.org/10.1007/s10958-018-3892-z

Author

Voronetsky, E. Yu. / Normalizers of Elementary Overgroups of Ep(2, A). в: Journal of Mathematical Sciences (United States). 2018 ; Том 232, № 5. стр. 610-621.

BibTeX

@article{532e9d5ca07b4f70b748026f4cfe2b45,
title = "Normalizers of Elementary Overgroups of Ep(2, A)",
abstract = "Let A be an involution ring, e1,.. , en be a full system of Hermitian idempotents in A, let every ei generate A as a two-sided ideal, and 2 ∈ A∗. In this paper, the normalizers of the groups Ep(2,A) · E(2,A, I) are calculated under natural assumptions on A, where Ep(2,A) denotes the elementary symplectic group, E(2,A, I) stands for the elementary subgroup of level I.",
author = "Voronetsky, {E. Yu.}",
note = "Voronetsky, E.Y. Normalizers of Elementary Overgroups of Ep(2, A). J Math Sci 232, 610–621 (2018). https://doi.org/10.1007/s10958-018-3892-z",
year = "2018",
month = aug,
doi = "10.1007/s10958-018-3892-z",
language = "English",
volume = "232",
pages = "610--621",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - Normalizers of Elementary Overgroups of Ep(2, A)

AU - Voronetsky, E. Yu.

N1 - Voronetsky, E.Y. Normalizers of Elementary Overgroups of Ep(2, A). J Math Sci 232, 610–621 (2018). https://doi.org/10.1007/s10958-018-3892-z

PY - 2018/8

Y1 - 2018/8

N2 - Let A be an involution ring, e1,.. , en be a full system of Hermitian idempotents in A, let every ei generate A as a two-sided ideal, and 2 ∈ A∗. In this paper, the normalizers of the groups Ep(2,A) · E(2,A, I) are calculated under natural assumptions on A, where Ep(2,A) denotes the elementary symplectic group, E(2,A, I) stands for the elementary subgroup of level I.

AB - Let A be an involution ring, e1,.. , en be a full system of Hermitian idempotents in A, let every ei generate A as a two-sided ideal, and 2 ∈ A∗. In this paper, the normalizers of the groups Ep(2,A) · E(2,A, I) are calculated under natural assumptions on A, where Ep(2,A) denotes the elementary symplectic group, E(2,A, I) stands for the elementary subgroup of level I.

UR - http://www.scopus.com/inward/record.url?scp=85048361474&partnerID=8YFLogxK

U2 - 10.1007/s10958-018-3892-z

DO - 10.1007/s10958-018-3892-z

M3 - Article

AN - SCOPUS:85048361474

VL - 232

SP - 610

EP - 621

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 5

ER -

ID: 36983070