Standard

Nonsmooth Speed-Gradient Algorithms. / Dolgopolik, M.V.; Fradkov, A.L.

2015 EUROPEAN CONTROL CONFERENCE (ECC). IEEE Canada, 2015. стр. 998-1002.

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Dolgopolik, MV & Fradkov, AL 2015, Nonsmooth Speed-Gradient Algorithms. в 2015 EUROPEAN CONTROL CONFERENCE (ECC). IEEE Canada, стр. 998-1002, European Control Conference (ECC), Linz, Австрия, 15/07/15. https://doi.org/10.1109/ECC.2015.7330671

APA

Dolgopolik, M. V., & Fradkov, A. L. (2015). Nonsmooth Speed-Gradient Algorithms. в 2015 EUROPEAN CONTROL CONFERENCE (ECC) (стр. 998-1002). IEEE Canada. https://doi.org/10.1109/ECC.2015.7330671

Vancouver

Dolgopolik MV, Fradkov AL. Nonsmooth Speed-Gradient Algorithms. в 2015 EUROPEAN CONTROL CONFERENCE (ECC). IEEE Canada. 2015. стр. 998-1002 https://doi.org/10.1109/ECC.2015.7330671

Author

Dolgopolik, M.V. ; Fradkov, A.L. / Nonsmooth Speed-Gradient Algorithms. 2015 EUROPEAN CONTROL CONFERENCE (ECC). IEEE Canada, 2015. стр. 998-1002

BibTeX

@inproceedings{f4ce017cdbd14b28843a0ff133a70ad8,
title = "Nonsmooth Speed-Gradient Algorithms",
abstract = "The first step toward development a {"}nonsmooth{"} version of Speed-Gradient (SG) method is made. As a basis for formal approach the Hadamard subdifferential and set-valued analysis are chosen. Nonsmooth versions of SG-algorithm in differential and finite form are formulated. Conditions for the control goal achievement are proposed. The results are illustrated by an example of asymptotic minimization of the max-norm for a second order linear system.",
keywords = "SYSTEMS",
author = "M.V. Dolgopolik and A.L. Fradkov",
year = "2015",
doi = "10.1109/ECC.2015.7330671",
language = "Английский",
isbn = "9783952426937",
pages = "998--1002",
booktitle = "2015 EUROPEAN CONTROL CONFERENCE (ECC)",
publisher = "IEEE Canada",
address = "Канада",
note = "null ; Conference date: 15-07-2015 Through 17-07-2015",

}

RIS

TY - GEN

T1 - Nonsmooth Speed-Gradient Algorithms

AU - Dolgopolik, M.V.

AU - Fradkov, A.L.

PY - 2015

Y1 - 2015

N2 - The first step toward development a "nonsmooth" version of Speed-Gradient (SG) method is made. As a basis for formal approach the Hadamard subdifferential and set-valued analysis are chosen. Nonsmooth versions of SG-algorithm in differential and finite form are formulated. Conditions for the control goal achievement are proposed. The results are illustrated by an example of asymptotic minimization of the max-norm for a second order linear system.

AB - The first step toward development a "nonsmooth" version of Speed-Gradient (SG) method is made. As a basis for formal approach the Hadamard subdifferential and set-valued analysis are chosen. Nonsmooth versions of SG-algorithm in differential and finite form are formulated. Conditions for the control goal achievement are proposed. The results are illustrated by an example of asymptotic minimization of the max-norm for a second order linear system.

KW - SYSTEMS

U2 - 10.1109/ECC.2015.7330671

DO - 10.1109/ECC.2015.7330671

M3 - статья в сборнике материалов конференции

SN - 9783952426937

SP - 998

EP - 1002

BT - 2015 EUROPEAN CONTROL CONFERENCE (ECC)

PB - IEEE Canada

Y2 - 15 July 2015 through 17 July 2015

ER -

ID: 3988894