DOI

  • Evgenii S. Baranovskii
  • Vyacheslav V. Provotorov
  • Mikhail A. Artemov
  • Alexey P. Zhabko

This paper deals with a 3D mathematical model for the non-isothermal steady-state flow of an incompressible fluid with temperature-dependent viscosity in a pipeline network. Using the pressure and heat flux boundary conditions, as well as the conjugation conditions to satisfy the mass balance in interior junctions of the network, we propose the weak formulation of the nonlinear boundary value problem that arises in the framework of this model. The main result of our work is an existence theorem (in the class of weak solutions) for large data. The proof of this theorem is based on a combination of the Galerkin approximation scheme with one result from the field of topological degrees for odd mappings defined on symmetric domains.

Язык оригиналаанглийский
Номер статьи1300
Число страниц15
ЖурналSymmetry-Basel
Том13
Номер выпуска7
DOI
СостояниеОпубликовано - 19 июл 2021

    Предметные области Scopus

  • Компьютерные науки (разное)
  • Химия (разное)
  • Математика (все)
  • Физика и астрономия (разное)

ID: 86577916