DOI

In this paper we analyze news text collections (clusters) via extracting their paraphrase headlines into a paraphrase graph and working with this graph. Our aim is to test whether news headline is an appropriate form of news text compression. Different types of news collections: dynamic, static and combined (both dynamic and static) clusters are analyzed and it is shown that their respective paraphrase graphs reflect the characteristics of the texts. We also automatically extract the most informationally important linked fragments of news texts, and these fragments characterize news texts as either informative, conveying some information, or publicistic ones, trying to affect the readers emotionally. It is shown that news headlines of the informative type do represent their respective compressed news reports.
Язык оригиналаанглийский
Название основной публикацииSocial Informatics
Подзаголовок основной публикации10th International Conference, SocInfo 2018, St. Petersburg, Russia, September 25-28, 2018, Proceedings, Part II
ИздательSpringer Nature
Страницы139-147
Число страниц9
Том11186 LNCS
ISBN (электронное издание)978-3-030-01159-8
ISBN (печатное издание)978-3-030-01158-1
DOI
СостояниеОпубликовано - 2018

Серия публикаций

НазваниеLecture Notes in Computer Science
ИздательSpringer
Том11186
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

    Предметные области Scopus

  • Компьютерные науки (разное)
  • Языки и лингвистика

ID: 37683657