Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
New upper bounds for the problem of maximal satisfiability. / Kulikov, A. S.; Kutskov, K.
в: Discrete Mathematics and Applications, Том 19, № 2, 01.05.2009, стр. 155-172.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - New upper bounds for the problem of maximal satisfiability
AU - Kulikov, A. S.
AU - Kutskov, K.
PY - 2009/5/1
Y1 - 2009/5/1
N2 - In this paper we present relatively simple proofs of the following new upper bounds: cN, where c < 2 is a constant and N is the number of variables, for MAX-SAT for formulas with constant clause density; 2 K/6, where K is the number of clauses, for MAX-2-SAT; 2 N/6.7 for (n, 3)-MAX-2-SAT. All bounds are proved by the splitting method. The main two techniques are combined complexity measures and clause learning.
AB - In this paper we present relatively simple proofs of the following new upper bounds: cN, where c < 2 is a constant and N is the number of variables, for MAX-SAT for formulas with constant clause density; 2 K/6, where K is the number of clauses, for MAX-2-SAT; 2 N/6.7 for (n, 3)-MAX-2-SAT. All bounds are proved by the splitting method. The main two techniques are combined complexity measures and clause learning.
UR - http://www.scopus.com/inward/record.url?scp=67650092015&partnerID=8YFLogxK
U2 - 10.1515/DMA.2009.009
DO - 10.1515/DMA.2009.009
M3 - Article
AN - SCOPUS:67650092015
VL - 19
SP - 155
EP - 172
JO - Discrete Mathematics and Applications
JF - Discrete Mathematics and Applications
SN - 0924-9265
IS - 2
ER -
ID: 49825177