Standard

New correction theorems in the light of a weighted Littlewood-Paley-Rubio de Francia inequality. / Stolyarov, D. M.

в: Journal of Mathematical Sciences, Том 182, № 5, 01.05.2012, стр. 714-723.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Stolyarov, D. M. / New correction theorems in the light of a weighted Littlewood-Paley-Rubio de Francia inequality. в: Journal of Mathematical Sciences. 2012 ; Том 182, № 5. стр. 714-723.

BibTeX

@article{a96aaa8dc79d441ba6104d5841233136,
title = "New correction theorems in the light of a weighted Littlewood-Paley-Rubio de Francia inequality",
abstract = "We prove the following corrections theorem: Any function f on the circle T that is bounded by an α 1-weight w (which means that Mw 2 ≥ Cw 2) can be modified on a set e with so that its quadratic function built up from an arbitrary sequence of nonintersecting intervals in ℤ will not exceed C log 1/εw. Bibliography: 11 titles.",
author = "Stolyarov, {D. M.}",
year = "2012",
month = may,
day = "1",
doi = "10.1007/s10958-012-0775-6",
language = "English",
volume = "182",
pages = "714--723",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - New correction theorems in the light of a weighted Littlewood-Paley-Rubio de Francia inequality

AU - Stolyarov, D. M.

PY - 2012/5/1

Y1 - 2012/5/1

N2 - We prove the following corrections theorem: Any function f on the circle T that is bounded by an α 1-weight w (which means that Mw 2 ≥ Cw 2) can be modified on a set e with so that its quadratic function built up from an arbitrary sequence of nonintersecting intervals in ℤ will not exceed C log 1/εw. Bibliography: 11 titles.

AB - We prove the following corrections theorem: Any function f on the circle T that is bounded by an α 1-weight w (which means that Mw 2 ≥ Cw 2) can be modified on a set e with so that its quadratic function built up from an arbitrary sequence of nonintersecting intervals in ℤ will not exceed C log 1/εw. Bibliography: 11 titles.

UR - http://www.scopus.com/inward/record.url?scp=84860366559&partnerID=8YFLogxK

U2 - 10.1007/s10958-012-0775-6

DO - 10.1007/s10958-012-0775-6

M3 - Article

AN - SCOPUS:84860366559

VL - 182

SP - 714

EP - 723

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 5

ER -

ID: 35959374