Standard

New characteristic function for multistage dynamic games. / Pankratova, Y. B.; Petrosyan, L. A.

в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том 14, № 4, 2018, стр. 316-324.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Pankratova, YB & Petrosyan, LA 2018, 'New characteristic function for multistage dynamic games', ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том. 14, № 4, стр. 316-324. https://doi.org/10.21638/11702/spbu10.2018.404

APA

Pankratova, Y. B., & Petrosyan, L. A. (2018). New characteristic function for multistage dynamic games. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, 14(4), 316-324. https://doi.org/10.21638/11702/spbu10.2018.404

Vancouver

Pankratova YB, Petrosyan LA. New characteristic function for multistage dynamic games. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2018;14(4):316-324. https://doi.org/10.21638/11702/spbu10.2018.404

Author

Pankratova, Y. B. ; Petrosyan, L. A. / New characteristic function for multistage dynamic games. в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2018 ; Том 14, № 4. стр. 316-324.

BibTeX

@article{d63a5d44a384472cbd7ae4201e8ad327,
title = "New characteristic function for multistage dynamic games",
abstract = "The finite stage dynamic n-person games with transferable payoffs are considered. The cooperative version of the game is defined, and a new approach for constructing characteristic functions in multistage games based on characteristic functions defined in stage games is proposed. It is proved that the values of this new characteristic function dominate the values of characteristic function constructed using the min-max approach. This allows constructing the subcore of the classical core in the multistage game under consideration and guarantees that this new approach leads to time-consistent (works L. Petrosyan, G. Zaccour, 2003; L. Petrosyan, 1991) and in some cases strongly time-consistent solutions (paper L. Petrosyan, 1993). The example is provided showing the construction of this newly defined characteristic function and the time-consistency and strong time-consistency of the core.",
keywords = "multistage game, characteristic function, time-consistency, strongly time-consistency",
author = "Pankratova, {Y. B.} and Petrosyan, {L. A.}",
year = "2018",
doi = "10.21638/11702/spbu10.2018.404",
language = "Английский",
volume = "14",
pages = "316--324",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "4",

}

RIS

TY - JOUR

T1 - New characteristic function for multistage dynamic games

AU - Pankratova, Y. B.

AU - Petrosyan, L. A.

PY - 2018

Y1 - 2018

N2 - The finite stage dynamic n-person games with transferable payoffs are considered. The cooperative version of the game is defined, and a new approach for constructing characteristic functions in multistage games based on characteristic functions defined in stage games is proposed. It is proved that the values of this new characteristic function dominate the values of characteristic function constructed using the min-max approach. This allows constructing the subcore of the classical core in the multistage game under consideration and guarantees that this new approach leads to time-consistent (works L. Petrosyan, G. Zaccour, 2003; L. Petrosyan, 1991) and in some cases strongly time-consistent solutions (paper L. Petrosyan, 1993). The example is provided showing the construction of this newly defined characteristic function and the time-consistency and strong time-consistency of the core.

AB - The finite stage dynamic n-person games with transferable payoffs are considered. The cooperative version of the game is defined, and a new approach for constructing characteristic functions in multistage games based on characteristic functions defined in stage games is proposed. It is proved that the values of this new characteristic function dominate the values of characteristic function constructed using the min-max approach. This allows constructing the subcore of the classical core in the multistage game under consideration and guarantees that this new approach leads to time-consistent (works L. Petrosyan, G. Zaccour, 2003; L. Petrosyan, 1991) and in some cases strongly time-consistent solutions (paper L. Petrosyan, 1993). The example is provided showing the construction of this newly defined characteristic function and the time-consistency and strong time-consistency of the core.

KW - multistage game

KW - characteristic function

KW - time-consistency

KW - strongly time-consistency

U2 - 10.21638/11702/spbu10.2018.404

DO - 10.21638/11702/spbu10.2018.404

M3 - статья

VL - 14

SP - 316

EP - 324

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 4

ER -

ID: 39797398