Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
New application of multiple linear regression method - A case in China air quality. / He, Yang; Qi, Dongfang; Bure, Vladimir M.
в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том 18, № 4, 12.2022, стр. 516-526.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - New application of multiple linear regression method - A case in China air quality
AU - He, Yang
AU - Qi, Dongfang
AU - Bure, Vladimir M.
PY - 2022/12
Y1 - 2022/12
N2 - In this paper, we propose an econometric model based on the multiple linear regression method. This research aims to evaluate the most important factors of the dependent variable. To be more specific, we consider the properties of this model, model quality, parameters test, checking the residual of the model. Then, to ensure that the prediction model is optimal, we use the backward elimination stepwise regression method to get the final model. At the same time, we also need to check the properties in each step. Finally, the results are illustrated by a real case in China air quality. The achieved model was applied to predict the 31 capital cities in Сhina's air quality index (AQI) during 2013-2019 per year. All calculations and tests were achieved by using R-studio. The dependent variable is the China's AQI. The control variables are six pollutant factors and four meteorological factors. In summary, the model shows that the most significant influencing factor of the AQI in China is PM_2.5, followed by O_3.
AB - In this paper, we propose an econometric model based on the multiple linear regression method. This research aims to evaluate the most important factors of the dependent variable. To be more specific, we consider the properties of this model, model quality, parameters test, checking the residual of the model. Then, to ensure that the prediction model is optimal, we use the backward elimination stepwise regression method to get the final model. At the same time, we also need to check the properties in each step. Finally, the results are illustrated by a real case in China air quality. The achieved model was applied to predict the 31 capital cities in Сhina's air quality index (AQI) during 2013-2019 per year. All calculations and tests were achieved by using R-studio. The dependent variable is the China's AQI. The control variables are six pollutant factors and four meteorological factors. In summary, the model shows that the most significant influencing factor of the AQI in China is PM_2.5, followed by O_3.
KW - МНОЖЕСТВЕННАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ
KW - ЗАГРЯЗНЕНИЕ ВОЗДУХА
KW - AQI
KW - проверка гипотез
KW - PM_2.5
KW - O-3
KW - MULTIPLE LINEAR REGRESSION
KW - air pollution
KW - HYPOTHESIS TEST
UR - https://elibrary.ru/item.asp?id=50530364
UR - https://applmathjournal.spbu.ru/article/view/15527
U2 - 10.21638/11701/spbu10.2022.406
DO - 10.21638/11701/spbu10.2022.406
M3 - Article
VL - 18
SP - 516
EP - 526
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
SN - 1811-9905
IS - 4
ER -
ID: 104500716