Standard

New antimicrobial materials with cerium ions in the composition of salts, solutions, and composite systems based on Ce3+(NO3)3 × 6H2O. / Gainanova, Asiya A.; Kuz’micheva, Galina M.; Terekhova, Raisa P.; Pashkin, Igor I.; Trigub, Alexander L.; Malysheva, Natal’ya E.; Svetogorov, Roman D.; Alimguzina, Aliya R.; Koroleva, Alexandra V.

в: New Journal of Chemistry, Том 46, № 40, 16.09.2022, стр. 19271-19282.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Gainanova, AA, Kuz’micheva, GM, Terekhova, RP, Pashkin, II, Trigub, AL, Malysheva, NE, Svetogorov, RD, Alimguzina, AR & Koroleva, AV 2022, 'New antimicrobial materials with cerium ions in the composition of salts, solutions, and composite systems based on Ce3+(NO3)3 × 6H2O', New Journal of Chemistry, Том. 46, № 40, стр. 19271-19282. https://doi.org/10.1039/d2nj03691f

APA

Gainanova, A. A., Kuz’micheva, G. M., Terekhova, R. P., Pashkin, I. I., Trigub, A. L., Malysheva, N. E., Svetogorov, R. D., Alimguzina, A. R., & Koroleva, A. V. (2022). New antimicrobial materials with cerium ions in the composition of salts, solutions, and composite systems based on Ce3+(NO3)3 × 6H2O. New Journal of Chemistry, 46(40), 19271-19282. https://doi.org/10.1039/d2nj03691f

Vancouver

Gainanova AA, Kuz’micheva GM, Terekhova RP, Pashkin II, Trigub AL, Malysheva NE и пр. New antimicrobial materials with cerium ions in the composition of salts, solutions, and composite systems based on Ce3+(NO3)3 × 6H2O. New Journal of Chemistry. 2022 Сент. 16;46(40):19271-19282. https://doi.org/10.1039/d2nj03691f

Author

Gainanova, Asiya A. ; Kuz’micheva, Galina M. ; Terekhova, Raisa P. ; Pashkin, Igor I. ; Trigub, Alexander L. ; Malysheva, Natal’ya E. ; Svetogorov, Roman D. ; Alimguzina, Aliya R. ; Koroleva, Alexandra V. / New antimicrobial materials with cerium ions in the composition of salts, solutions, and composite systems based on Ce3+(NO3)3 × 6H2O. в: New Journal of Chemistry. 2022 ; Том 46, № 40. стр. 19271-19282.

BibTeX

@article{c0ddaf63a9784fdcb20c12431983c75b,
title = "New antimicrobial materials with cerium ions in the composition of salts, solutions, and composite systems based on Ce3+(NO3)3 × 6H2O",
abstract = "The results of detailed characterization of new antimicrobial materials in the form of Ce(NO3)3 × 6H2O salt with the proposed crystal-chemical composition of [Ce3+(H2O)4(NO3)3] × 2H2O and its aqueous solution by X-ray diffraction (XRD), differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) are presented. The stages of [Ce3+(H2O)4(NO3)3] × 2H2O thermal decomposition with the formation of [Ce3+(H2O)4(NO3)3] (<220 °C), Ce3+ONO3 (230-320 °C) and Ce4+O2 (>300 °C) are shown. It was found that Ce3+ ions in the composition of [Ce(H2O)4(NO3)3] × 2H2O salt and in its aqueous solution retain their formal charge (FC Ce = 3) and coordination number (CNCe = 10, where 6O from three NO3− groups and 4O from four 4H2O molecules) with the reorientation of nitro groups in Ce3+ far environment in an aqueous salt solution. It was established that [Ce3+(H2O)4(NO3)3] × 2H2O, [Ce3+(H2O)4(NO3)3] and Ce3+ONO3 salts inhibit the growth of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacteria in the absence of radiation with a growth zone inhibition diameter D > 37 mm with Dmax = 45 mm on the multiphase sample ([Ce3+(H2O)4(NO3)3], Ce3+ONO3, Ce4+O2), which is higher than that on penicillin (D = 12-18 mm). It is shown that an increase in the [Ce3+(H2O)4(NO3)3] × 2H2O salt concentration in an aqueous solution has a positive effect on antimicrobial activity. It is not excluded that the absence of interaction of Ce3+ ions in the salt solution with Langmuir phospholipid monolayers of phosphatidylethanolamine (DPPE) and phosphatidylglycerin (DPPG) is associated with the damage to the protein component of the bacterial membrane and not with the phospholipid one and/or with the “penetration” of Ce3+ ions into the cell and violation of its water-ionic balance. It is shown that the “H-Beta - Ce3+(NO3)3 × 6H2O” system fabrication with biocompatible H-Beta zeolite contributes to the preservation of antimicrobial activity in the dark (Pseudomonas aeruginosa) with a decrease in the amount of the active component.",
author = "Gainanova, {Asiya A.} and Kuz{\textquoteright}micheva, {Galina M.} and Terekhova, {Raisa P.} and Pashkin, {Igor I.} and Trigub, {Alexander L.} and Malysheva, {Natal{\textquoteright}ya E.} and Svetogorov, {Roman D.} and Alimguzina, {Aliya R.} and Koroleva, {Alexandra V.}",
note = "Publisher Copyright: {\textcopyright} 2022 The Royal Society of Chemistry.",
year = "2022",
month = sep,
day = "16",
doi = "10.1039/d2nj03691f",
language = "English",
volume = "46",
pages = "19271--19282",
journal = "New Journal of Chemistry",
issn = "1144-0546",
publisher = "Royal Society of Chemistry",
number = "40",

}

RIS

TY - JOUR

T1 - New antimicrobial materials with cerium ions in the composition of salts, solutions, and composite systems based on Ce3+(NO3)3 × 6H2O

AU - Gainanova, Asiya A.

AU - Kuz’micheva, Galina M.

AU - Terekhova, Raisa P.

AU - Pashkin, Igor I.

AU - Trigub, Alexander L.

AU - Malysheva, Natal’ya E.

AU - Svetogorov, Roman D.

AU - Alimguzina, Aliya R.

AU - Koroleva, Alexandra V.

N1 - Publisher Copyright: © 2022 The Royal Society of Chemistry.

PY - 2022/9/16

Y1 - 2022/9/16

N2 - The results of detailed characterization of new antimicrobial materials in the form of Ce(NO3)3 × 6H2O salt with the proposed crystal-chemical composition of [Ce3+(H2O)4(NO3)3] × 2H2O and its aqueous solution by X-ray diffraction (XRD), differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) are presented. The stages of [Ce3+(H2O)4(NO3)3] × 2H2O thermal decomposition with the formation of [Ce3+(H2O)4(NO3)3] (<220 °C), Ce3+ONO3 (230-320 °C) and Ce4+O2 (>300 °C) are shown. It was found that Ce3+ ions in the composition of [Ce(H2O)4(NO3)3] × 2H2O salt and in its aqueous solution retain their formal charge (FC Ce = 3) and coordination number (CNCe = 10, where 6O from three NO3− groups and 4O from four 4H2O molecules) with the reorientation of nitro groups in Ce3+ far environment in an aqueous salt solution. It was established that [Ce3+(H2O)4(NO3)3] × 2H2O, [Ce3+(H2O)4(NO3)3] and Ce3+ONO3 salts inhibit the growth of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacteria in the absence of radiation with a growth zone inhibition diameter D > 37 mm with Dmax = 45 mm on the multiphase sample ([Ce3+(H2O)4(NO3)3], Ce3+ONO3, Ce4+O2), which is higher than that on penicillin (D = 12-18 mm). It is shown that an increase in the [Ce3+(H2O)4(NO3)3] × 2H2O salt concentration in an aqueous solution has a positive effect on antimicrobial activity. It is not excluded that the absence of interaction of Ce3+ ions in the salt solution with Langmuir phospholipid monolayers of phosphatidylethanolamine (DPPE) and phosphatidylglycerin (DPPG) is associated with the damage to the protein component of the bacterial membrane and not with the phospholipid one and/or with the “penetration” of Ce3+ ions into the cell and violation of its water-ionic balance. It is shown that the “H-Beta - Ce3+(NO3)3 × 6H2O” system fabrication with biocompatible H-Beta zeolite contributes to the preservation of antimicrobial activity in the dark (Pseudomonas aeruginosa) with a decrease in the amount of the active component.

AB - The results of detailed characterization of new antimicrobial materials in the form of Ce(NO3)3 × 6H2O salt with the proposed crystal-chemical composition of [Ce3+(H2O)4(NO3)3] × 2H2O and its aqueous solution by X-ray diffraction (XRD), differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) are presented. The stages of [Ce3+(H2O)4(NO3)3] × 2H2O thermal decomposition with the formation of [Ce3+(H2O)4(NO3)3] (<220 °C), Ce3+ONO3 (230-320 °C) and Ce4+O2 (>300 °C) are shown. It was found that Ce3+ ions in the composition of [Ce(H2O)4(NO3)3] × 2H2O salt and in its aqueous solution retain their formal charge (FC Ce = 3) and coordination number (CNCe = 10, where 6O from three NO3− groups and 4O from four 4H2O molecules) with the reorientation of nitro groups in Ce3+ far environment in an aqueous salt solution. It was established that [Ce3+(H2O)4(NO3)3] × 2H2O, [Ce3+(H2O)4(NO3)3] and Ce3+ONO3 salts inhibit the growth of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacteria in the absence of radiation with a growth zone inhibition diameter D > 37 mm with Dmax = 45 mm on the multiphase sample ([Ce3+(H2O)4(NO3)3], Ce3+ONO3, Ce4+O2), which is higher than that on penicillin (D = 12-18 mm). It is shown that an increase in the [Ce3+(H2O)4(NO3)3] × 2H2O salt concentration in an aqueous solution has a positive effect on antimicrobial activity. It is not excluded that the absence of interaction of Ce3+ ions in the salt solution with Langmuir phospholipid monolayers of phosphatidylethanolamine (DPPE) and phosphatidylglycerin (DPPG) is associated with the damage to the protein component of the bacterial membrane and not with the phospholipid one and/or with the “penetration” of Ce3+ ions into the cell and violation of its water-ionic balance. It is shown that the “H-Beta - Ce3+(NO3)3 × 6H2O” system fabrication with biocompatible H-Beta zeolite contributes to the preservation of antimicrobial activity in the dark (Pseudomonas aeruginosa) with a decrease in the amount of the active component.

UR - http://www.scopus.com/inward/record.url?scp=85140442251&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/a609bfd6-8f28-3c81-8f26-ec659939f46e/

U2 - 10.1039/d2nj03691f

DO - 10.1039/d2nj03691f

M3 - Article

AN - SCOPUS:85140442251

VL - 46

SP - 19271

EP - 19282

JO - New Journal of Chemistry

JF - New Journal of Chemistry

SN - 1144-0546

IS - 40

ER -

ID: 100691606