Standard

Оn momentum flow density of the gravitational field. / Drivotin, O. I.

в: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, Том 17, № 2, 2021, стр. 137-147.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Drivotin, OI 2021, 'Оn momentum flow density of the gravitational field', Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, Том. 17, № 2, стр. 137-147. https://doi.org/10.21638/11701/SPBU10.2021.204

APA

Drivotin, O. I. (2021). Оn momentum flow density of the gravitational field. Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, 17(2), 137-147. https://doi.org/10.21638/11701/SPBU10.2021.204

Vancouver

Drivotin OI. Оn momentum flow density of the gravitational field. Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. 2021;17(2):137-147. https://doi.org/10.21638/11701/SPBU10.2021.204

Author

Drivotin, O. I. / Оn momentum flow density of the gravitational field. в: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. 2021 ; Том 17, № 2. стр. 137-147.

BibTeX

@article{5f7ebfa040b449fb8e45e3708c073213,
title = "Оn momentum flow density of the gravitational field",
abstract = "Momentum is considered on the basis of the approach widely used in the calculus of variations and in the optimal control theory, where variation of a cost functional is investigated. In physical theory, it is the action functional. Action variation under Lie dragging can be expressed as a surface integral of some differential form. The momentum density flow is defined using this form. In this work, the momentum balance equation is obtained. This equation shows that the momentum field transforms into a momentum of a mass. Examples showing the momentum flow structure for a mass distribution representing a uniform thin layer are provided.",
keywords = "Action variation of the gravitational field, Momentum balance equation, Momentum flow density of the gravitational field, Thin layer with uniform mass distribution, momentum flow density of the gravitational field, momentum balance equation, thin layer with uniform mass distribution, action variation of the gravitational field",
author = "Drivotin, {O. I.}",
note = "Publisher Copyright: {\textcopyright} 2021 Saint Petersburg State University. All rights reserved.",
year = "2021",
doi = "10.21638/11701/SPBU10.2021.204",
language = "русский",
volume = "17",
pages = "137--147",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "2",

}

RIS

TY - JOUR

T1 - Оn momentum flow density of the gravitational field

AU - Drivotin, O. I.

N1 - Publisher Copyright: © 2021 Saint Petersburg State University. All rights reserved.

PY - 2021

Y1 - 2021

N2 - Momentum is considered on the basis of the approach widely used in the calculus of variations and in the optimal control theory, where variation of a cost functional is investigated. In physical theory, it is the action functional. Action variation under Lie dragging can be expressed as a surface integral of some differential form. The momentum density flow is defined using this form. In this work, the momentum balance equation is obtained. This equation shows that the momentum field transforms into a momentum of a mass. Examples showing the momentum flow structure for a mass distribution representing a uniform thin layer are provided.

AB - Momentum is considered on the basis of the approach widely used in the calculus of variations and in the optimal control theory, where variation of a cost functional is investigated. In physical theory, it is the action functional. Action variation under Lie dragging can be expressed as a surface integral of some differential form. The momentum density flow is defined using this form. In this work, the momentum balance equation is obtained. This equation shows that the momentum field transforms into a momentum of a mass. Examples showing the momentum flow structure for a mass distribution representing a uniform thin layer are provided.

KW - Action variation of the gravitational field

KW - Momentum balance equation

KW - Momentum flow density of the gravitational field

KW - Thin layer with uniform mass distribution

KW - momentum flow density of the gravitational field

KW - momentum balance equation

KW - thin layer with uniform mass distribution

KW - action variation of the gravitational field

UR - http://www.scopus.com/inward/record.url?scp=85112010311&partnerID=8YFLogxK

U2 - 10.21638/11701/SPBU10.2021.204

DO - 10.21638/11701/SPBU10.2021.204

M3 - статья

AN - SCOPUS:85112010311

VL - 17

SP - 137

EP - 147

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 2

ER -

ID: 85585597