Standard

Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at √s = 13 TeV. / ALICE Collaboration.

в: European Physical Journal C, Том 80, № 2, 167, 01.02.2020.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

ALICE Collaboration. / Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at √s = 13 TeV. в: European Physical Journal C. 2020 ; Том 80, № 2.

BibTeX

@article{5beb53c382b94ab2a0045fb21f48194e,
title = "Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at √s = 13 TeV",
abstract = "The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity (| y| < 0.5) are measured in proton-proton collisions at s = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of KS0, Λ , Ξ , and Ω increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV.",
keywords = "P-PB COLLISIONS, SIMULATION",
author = "{ALICE Collaboration} and S. Acharya and D. Adamov{\'a} and Adhya, {S. P.} and A. Adler and J. Adolfsson and Aggarwal, {M. M.} and {Aglieri Rinella}, G. and M. Agnello and N. Agrawal and Z. Ahammed and S. Ahmad and Ahn, {S. U.} and A. Akindinov and M. Al-Turany and Alam, {S. N.} and Albuquerque, {D. S.D.} and D. Aleksandrov and B. Alessandro and Alfanda, {H. M.} and {Alfaro Molina}, R. and B. Ali and Y. Ali and A. Alici and A. Alkin and J. Alme and T. Alt and L. Altenkamper and I. Altsybeev and Anaam, {M. N.} and C. Andrei and D. Andreou and Andrews, {H. A.} and A. Andronic and M. Angeletti and V. Anguelov and C. Anson and T. Anti{\v c}i{\'c} and F. Antinori and P. Antonioli and R. Anwar and N. Apadula and L. Aphecetche and A. Erokhin and G. Feofilov and V. Kovalenko and T. Lazareva and D. Nesterov and V. Vechernin and A. Zarochentsev and V. Zherebchevskii",
note = "Funding Information: The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung f{\"u}r Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Cient{\'i}fico e Tecnol{\'o}gico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Funda{\c c}{\~a}o de Amparo {\`a} Pesquisa do Estado de S{\~a}o Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC) , China; Croatian Science Foundation and Ministry of Science and Education, Croatia; Centro de Aplicaciones Tecnol{\'o}gicas y Desarrollo Nuclear (CEADEN), Cubaenerg{\'i}a, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat {\`a} l{\textquoteright}Energie Atomique (CEA), Institut National de Physique Nucl{\'e}aire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS) and R{\'e}gion des Pays de la Loire, France; Bundesministerium f{\"u}r Bildung und Forschung (BMBF) and GSI Helmholtzzentrum f{\"u}r Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology , Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnolog{\'i}a, through Fondo de Cooperaci{\'o}n Internacional en Ciencia y Tecnolog{\'i}a (FONCICYT) and Direcci{\'o}n General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Cat{\'o}lica del Per{\'u}, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America. Publisher Copyright: {\textcopyright} 2020, CERN for the benefit of the ALICE collaboration. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2020",
month = feb,
day = "1",
doi = "10.1140/epjc/s10052-020-7673-8",
language = "English",
volume = "80",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at √s = 13 TeV

AU - ALICE Collaboration

AU - Acharya, S.

AU - Adamová, D.

AU - Adhya, S. P.

AU - Adler, A.

AU - Adolfsson, J.

AU - Aggarwal, M. M.

AU - Aglieri Rinella, G.

AU - Agnello, M.

AU - Agrawal, N.

AU - Ahammed, Z.

AU - Ahmad, S.

AU - Ahn, S. U.

AU - Akindinov, A.

AU - Al-Turany, M.

AU - Alam, S. N.

AU - Albuquerque, D. S.D.

AU - Aleksandrov, D.

AU - Alessandro, B.

AU - Alfanda, H. M.

AU - Alfaro Molina, R.

AU - Ali, B.

AU - Ali, Y.

AU - Alici, A.

AU - Alkin, A.

AU - Alme, J.

AU - Alt, T.

AU - Altenkamper, L.

AU - Altsybeev, I.

AU - Anaam, M. N.

AU - Andrei, C.

AU - Andreou, D.

AU - Andrews, H. A.

AU - Andronic, A.

AU - Angeletti, M.

AU - Anguelov, V.

AU - Anson, C.

AU - Antičić, T.

AU - Antinori, F.

AU - Antonioli, P.

AU - Anwar, R.

AU - Apadula, N.

AU - Aphecetche, L.

AU - Erokhin, A.

AU - Feofilov, G.

AU - Kovalenko, V.

AU - Lazareva, T.

AU - Nesterov, D.

AU - Vechernin, V.

AU - Zarochentsev, A.

AU - Zherebchevskii, V.

N1 - Funding Information: The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC) , China; Croatian Science Foundation and Ministry of Science and Education, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS) and Région des Pays de la Loire, France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology , Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America. Publisher Copyright: © 2020, CERN for the benefit of the ALICE collaboration. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2020/2/1

Y1 - 2020/2/1

N2 - The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity (| y| < 0.5) are measured in proton-proton collisions at s = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of KS0, Λ , Ξ , and Ω increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV.

AB - The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity (| y| < 0.5) are measured in proton-proton collisions at s = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of KS0, Λ , Ξ , and Ω increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV.

KW - P-PB COLLISIONS

KW - SIMULATION

UR - http://www.scopus.com/inward/record.url?scp=85097330034&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/6d8a68a2-db65-3791-bfe8-d1b75c292f97/

U2 - 10.1140/epjc/s10052-020-7673-8

DO - 10.1140/epjc/s10052-020-7673-8

M3 - Article

VL - 80

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 2

M1 - 167

ER -

ID: 60641704