Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Multiple interpolation by Blaschke products. / Videnskii, I. V.
в: Journal of Soviet Mathematics, Том 34, № 6, 09.1986, стр. 2139-2143.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Multiple interpolation by Blaschke products
AU - Videnskii, I. V.
N1 - Copyright: Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1986/9
Y1 - 1986/9
N2 - Basic result: let {zn} be a sequence of points of the unit disc and {kn} be a sequence of natural numbers, satisfying the conditions:[Figure not available: see fulltext.] Then for any bounded sequence of complex numbers[Figure not available: see fulltext.] there exists a sequence[Figure not available: see fulltext.] such that the function[Figure not available: see fulltext.] interpolates ω: where BΛ is the Blaschke product with zeros at the points λn(k)}, M is a constant,[Figure not available: see fulltext.]. if N=1 this theorem is proved by Earl (RZhMat, 1972, 1B 163). The idea of the proof, as in Earl, is that if the zeros {λn(k)} run through neighborhoods of the points zn, then the Blaschke products with these zeros interpolate sequences ω, filling some neighborhood of zero in the space Z∞. The theorem formulated is used to get interpolation theorems in classes narrower than H∞.
AB - Basic result: let {zn} be a sequence of points of the unit disc and {kn} be a sequence of natural numbers, satisfying the conditions:[Figure not available: see fulltext.] Then for any bounded sequence of complex numbers[Figure not available: see fulltext.] there exists a sequence[Figure not available: see fulltext.] such that the function[Figure not available: see fulltext.] interpolates ω: where BΛ is the Blaschke product with zeros at the points λn(k)}, M is a constant,[Figure not available: see fulltext.]. if N=1 this theorem is proved by Earl (RZhMat, 1972, 1B 163). The idea of the proof, as in Earl, is that if the zeros {λn(k)} run through neighborhoods of the points zn, then the Blaschke products with these zeros interpolate sequences ω, filling some neighborhood of zero in the space Z∞. The theorem formulated is used to get interpolation theorems in classes narrower than H∞.
UR - http://www.scopus.com/inward/record.url?scp=34250128976&partnerID=8YFLogxK
U2 - 10.1007/BF01741588
DO - 10.1007/BF01741588
M3 - Article
AN - SCOPUS:34250128976
VL - 34
SP - 2139
EP - 2143
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 6
ER -
ID: 75954037