Standard

Multi-Loop Calculations of Anomalous Exponents in the Models of Critical Dynamics. / Adzhemyan, L. Ts; Dančo, M.; Hnatič, M.; Ivanova, E. V.; Kompaniets, M. V.

Mathematical Modeling and Computational Physics, MMCP 2015. ред. / Michal Hnatic; Gheorghe Adam; Jan Busa. EDP Sciences, 2016. 02004 (EPJ Web of Conferences; Том 108).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференцииРецензирование

Harvard

Adzhemyan, LT, Dančo, M, Hnatič, M, Ivanova, EV & Kompaniets, MV 2016, Multi-Loop Calculations of Anomalous Exponents in the Models of Critical Dynamics. в M Hnatic, G Adam & J Busa (ред.), Mathematical Modeling and Computational Physics, MMCP 2015., 02004, EPJ Web of Conferences, Том. 108, EDP Sciences, Mathematical Modeling and Computational Physics Conference, MMCP 2015, Stara Lesna, Словакия, 12/07/15. https://doi.org/10.1051/epjconf/201610802004

APA

Adzhemyan, L. T., Dančo, M., Hnatič, M., Ivanova, E. V., & Kompaniets, M. V. (2016). Multi-Loop Calculations of Anomalous Exponents in the Models of Critical Dynamics. в M. Hnatic, G. Adam, & J. Busa (Ред.), Mathematical Modeling and Computational Physics, MMCP 2015 [02004] (EPJ Web of Conferences; Том 108). EDP Sciences. https://doi.org/10.1051/epjconf/201610802004

Vancouver

Adzhemyan LT, Dančo M, Hnatič M, Ivanova EV, Kompaniets MV. Multi-Loop Calculations of Anomalous Exponents in the Models of Critical Dynamics. в Hnatic M, Adam G, Busa J, Редакторы, Mathematical Modeling and Computational Physics, MMCP 2015. EDP Sciences. 2016. 02004. (EPJ Web of Conferences). https://doi.org/10.1051/epjconf/201610802004

Author

Adzhemyan, L. Ts ; Dančo, M. ; Hnatič, M. ; Ivanova, E. V. ; Kompaniets, M. V. / Multi-Loop Calculations of Anomalous Exponents in the Models of Critical Dynamics. Mathematical Modeling and Computational Physics, MMCP 2015. Редактор / Michal Hnatic ; Gheorghe Adam ; Jan Busa. EDP Sciences, 2016. (EPJ Web of Conferences).

BibTeX

@inproceedings{ec6e1ff5d1784bb984112c066ac2d60a,
title = "Multi-Loop Calculations of Anomalous Exponents in the Models of Critical Dynamics",
abstract = "The Renormalization group method (RG) is applied to the investigation of the E model of critical dynamics, which describes the transition from the normal to the superfluid phase in He4. The technique {"}Sector decomposition{"} with R' operation is used for the calculation of the Feynman diagrams. The RG functions, critical exponents and critical dynamical exponent z, which determines the growth of the relaxation time near the critical point, have been calculated in the two-loop approximation in the framework of ε-expansion. The relevance of a fixed point for helium, where the dynamic scaling is weakly violated, is briefly discussed.",
author = "Adzhemyan, {L. Ts} and M. Dan{\v c}o and M. Hnati{\v c} and Ivanova, {E. V.} and Kompaniets, {M. V.}",
year = "2016",
month = feb,
day = "9",
doi = "10.1051/epjconf/201610802004",
language = "English",
series = "EPJ Web of Conferences",
publisher = "EDP Sciences",
editor = "Michal Hnatic and Gheorghe Adam and Jan Busa",
booktitle = "Mathematical Modeling and Computational Physics, MMCP 2015",
address = "France",
note = "Mathematical Modeling and Computational Physics Conference, MMCP 2015 ; Conference date: 12-07-2015 Through 16-07-2015",

}

RIS

TY - GEN

T1 - Multi-Loop Calculations of Anomalous Exponents in the Models of Critical Dynamics

AU - Adzhemyan, L. Ts

AU - Dančo, M.

AU - Hnatič, M.

AU - Ivanova, E. V.

AU - Kompaniets, M. V.

PY - 2016/2/9

Y1 - 2016/2/9

N2 - The Renormalization group method (RG) is applied to the investigation of the E model of critical dynamics, which describes the transition from the normal to the superfluid phase in He4. The technique "Sector decomposition" with R' operation is used for the calculation of the Feynman diagrams. The RG functions, critical exponents and critical dynamical exponent z, which determines the growth of the relaxation time near the critical point, have been calculated in the two-loop approximation in the framework of ε-expansion. The relevance of a fixed point for helium, where the dynamic scaling is weakly violated, is briefly discussed.

AB - The Renormalization group method (RG) is applied to the investigation of the E model of critical dynamics, which describes the transition from the normal to the superfluid phase in He4. The technique "Sector decomposition" with R' operation is used for the calculation of the Feynman diagrams. The RG functions, critical exponents and critical dynamical exponent z, which determines the growth of the relaxation time near the critical point, have been calculated in the two-loop approximation in the framework of ε-expansion. The relevance of a fixed point for helium, where the dynamic scaling is weakly violated, is briefly discussed.

UR - http://www.scopus.com/inward/record.url?scp=84961689550&partnerID=8YFLogxK

U2 - 10.1051/epjconf/201610802004

DO - 10.1051/epjconf/201610802004

M3 - Conference contribution

T3 - EPJ Web of Conferences

BT - Mathematical Modeling and Computational Physics, MMCP 2015

A2 - Hnatic, Michal

A2 - Adam, Gheorghe

A2 - Busa, Jan

PB - EDP Sciences

T2 - Mathematical Modeling and Computational Physics Conference, MMCP 2015

Y2 - 12 July 2015 through 16 July 2015

ER -

ID: 74024625