Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Multidimentional Diffeomorphisms with Stable Periodic Points. / Vasil'eva, E.V.
в: Vestnik St. Petersburg University: Mathematics, Том 52, № 4, 2019, стр. 380-387.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Multidimentional Diffeomorphisms with Stable Periodic Points
AU - Vasil'eva, E.V.
N1 - E.V.Vasil'eva. Multidimentional Diffeomorphisms with Stable Periodic Point, Vestnik St. Petersburg University. Mathematics, 2019. Vol. 52, issue 4, pp.380-387.
PY - 2019
Y1 - 2019
N2 - The conditions are obtained for the existence of an infinite set of stable periodicpoints whose characteristic exponents are separated from zero in the neighborhood of the non-transversal homoclinic point. The conditions are imposed, first of all, on the method of tangency of a stable manifold with an unstable one; however, the proof of the theorem essentially uses the properties of the eigenvalues of the Jacobi matrix at a hyperbolic point.
AB - The conditions are obtained for the existence of an infinite set of stable periodicpoints whose characteristic exponents are separated from zero in the neighborhood of the non-transversal homoclinic point. The conditions are imposed, first of all, on the method of tangency of a stable manifold with an unstable one; however, the proof of the theorem essentially uses the properties of the eigenvalues of the Jacobi matrix at a hyperbolic point.
KW - multidimensional diffeomorphism
KW - non-transversal points
KW - multidimentional diffeomophisms
KW - non-transversal homoclinic point
KW - Stability
KW - characteristic exponents separated from zero
UR - https://link.springer.com/article/10.1134/S1063454119040125
M3 - Article
VL - 52
SP - 380
EP - 387
JO - Vestnik St. Petersburg University: Mathematics
JF - Vestnik St. Petersburg University: Mathematics
SN - 1063-4541
IS - 4
ER -
ID: 49887022